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INTRODUCTION

BLIND MASTER PO: Close your eyes. What
do you hear?

YOUNG KWAI CHANG CAINE: I hear the wa-
ter, I hear the birds.

MASTER PO: Do you hear your own
heartbeat?

KWAI CHANG CAINE: No.

MASTER PO: Do you hear the grasshopper
that is at your feet?



KWAI CHANG CAINE: Old man, how is it
that you hear these things?

MASTER PO: Young man, how is it that you
do not?

Kung Fu, Pilot

Economists’ reputation for dismality is a

bad rap. Economics is as exciting as any sci-
ence can be: the world is our lab, and the
many diverse people in it are our subjects.

The excitement in our work comes from
the opportunity to learn about cause and ef-
fect in human affairs. The big questions of
the day are our questions: Will loose monet-
ary policy spark economic growth or just fan
the fires of inflation? Iowa farmers and the
Federal Reserve chair want to know. Will
mandatory health insurance really make
Americans healthier? Such policy kindling
lights the fires of talk radio. We approach
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these questions coolly, however, armed not
with passion but with data.

Economists’ use of data to answer cause-
and-effect questions constitutes the field of
applied econometrics, known to students
and masters alike as ’metrics. The tools of
the ’metrics trade are disciplined data ana-
lysis, paired with the machinery of statistical
inference. There is a mystical aspect to our
work as well: we’re after truth, but truth is
not revealed in full, and the messages the
data transmit require interpretation. In this
spirit, we draw inspiration from the journey
of Kwai Chang Caine, hero of the classic
Kung Fu TV series. Caine, a mixed-race
Shaolin monk, wanders in search of his U.S.-
born half-brother in the nineteenth century
American West. As he searches, Caine ques-
tions all he sees in human affairs, uncovering
hidden relationships and deeper meanings.
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Like Caine’s journey, the Way of ’Metrics is
illuminated by questions.

Other Things Equal

In a disturbing development you may have
heard of, the proportion of American college
students completing their degrees in a timely
fashion has taken a sharp turn south. Politi-
cians and policy analysts blame falling col-
lege graduation rates on a pernicious com-
bination of tuition hikes and the large stu-
dent loans many students use to finance
their studies. Perhaps increased student bor-
rowing derails some who would otherwise
stay on track. The fact that the students most
likely to drop out of school often shoulder
large student loans would seem to substanti-
ate this hypothesis.

You’d rather pay for school with inherited
riches than borrowed money if you can. As
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we’ll discuss in detail, however, education
probably boosts earnings enough to make
loan repayment bearable for most graduates.
How then should we interpret the negative
correlation between debt burden and college
graduation rates? Does indebtedness cause
debtors to drop out? The first question to ask
in this context is who borrows the most. Stu-
dents who borrow heavily typically come
from middle and lower income families,
since richer families have more savings. For
many reasons, students from lower income
families are less likely to complete a degree
than those from higher income families, re-
gardless of whether they’ve borrowed heav-
ily. We should therefore be skeptical of
claims that high debt burdens cause lower
college completion rates when these claims
are based solely on comparisons of comple-
tion rates between those with more or less
debt. By virtue of the correlation between
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family background and college debt, the con-
trast in graduation rates between those with
and without student loans is not an other
things equal comparison.

As college students majoring in econom-
ics, we first learned the other things equal
idea by its Latin name, ceteris paribus. Com-
parisons made under ceteris paribus condi-
tions have a causal interpretation. Imagine
two students identical in every way, so their
families have the same financial resources
and their parents are similarly educated. One
of these virtual twins finances college by bor-
rowing and the other from savings. Because
they are otherwise equal in every way (their
grandmother has treated both to a small nest
egg), differences in their educational attain-
ment can be attributed to the fact that only
one has borrowed. To this day, we wonder
why so many economics students first en-
counter this central idea in Latin; maybe it’s
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a conspiracy to keep them from thinking
about it. Because, as this hypothetical com-
parison suggests, real other things equal
comparisons are hard to engineer, some
would even say impossibile (that’s Italian not
Latin, but at least people still speak it).

Hard to engineer, maybe, but not neces-
sarily impossible. The ’metrics craft uses
data to get to other things equal in spite of
the obstacles—called selection bias or omit-
ted variables bias—found on the path run-
ning from raw numbers to reliable causal
knowledge. The path to causal understand-
ing is rough and shadowed as it snakes
around the boulders of selection bias. And
yet, masters of ’metrics walk this path with
confidence as well as humility, successfully
linking cause and effect.

Our first line of attack on the causality
problem is a randomized experiment, often
called a randomized trial. In a randomized
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trial, researchers change the causal variables
of interest (say, the availability of college fin-
ancial aid) for a group selected using
something like a coin toss. By changing cir-
cumstances randomly, we make it highly
likely that the variable of interest is unre-
lated to the many other factors determining
the outcomes we mean to study. Random as-
signment isn’t the same as holding
everything else fixed, but it has the same ef-
fect. Random manipulation makes other
things equal hold on average across the
groups that did and did not experience ma-
nipulation. As we explain in Chapter 1, “on
average” is usually good enough.
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Randomized trials take pride of place in
our ’metrics toolkit. Alas, randomized social
experiments are expensive to field and may
be slow to bear fruit, while research funds
are scarce and life is short. Often, therefore,
masters of ’metrics turn to less powerful but
more accessible research designs. Even when
we can’t practicably randomize, however, we
still dream of the trials we’d like to do. The
notion of an ideal experiment disciplines our
approach to econometric research. Master-
ing ’Metrics shows how wise application of

28/694



our five favorite econometric tools brings us
as close as possible to the causality-revealing
power of a real experiment.

Our favorite econometric tools are illus-
trated here through a series of well-crafted
and important econometric studies. Vetted
by Grand Master Oogway of Kung Fu
Panda’s Jade Palace, these investigations of
causal effects are distinguished by their awe-
someness. The methods they use—random
assignment, regression, instrumental vari-
ables, regression discontinuity designs, and
differences-in-differences—are the Furious
Five of econometric research. For starters,
motivated by the contemporary American
debate over health care, the first chapter de-
scribes two social experiments that reveal
whether, as many policymakers believe,
health insurance indeed helps those who
have it stay healthy. Chapters 2–5 put our
other tools to work, crafting answers to
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important questions ranging from the bene-
fits of attending private colleges and selective
high schools to the costs of teen drinking and
the effects of central bank injections of
liquidity.

Our final chapter puts the Furious Five to
the test by returning to the education arena.
On average, college graduates earn about
twice as much as high school graduates, an
earnings gap that only seems to be growing.
Chapter 6 asks whether this gap is evidence
of a large causal return to schooling or
merely a reflection of the many other advant-
ages those with more education might have
(such as more educated parents). Can the re-
lationship between schooling and earnings
ever be evaluated on a ceteris paribus basis,
or must the boulders of selection bias forever
block our way? The challenge of quantifying
the causal link between schooling and earn-
ings provides a gripping test match for
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’metrics tools and the masters who wield
them.
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Mastering ’Metrics



Chapter 1

Randomized Trials

KWAI CHANG CAINE: What happens in a
man’s life is already written. A man
must move through life as his destiny
wills.

OLD MAN: Yet each is free to live as he
chooses. Though they seem opposite,
both are true.

Kung Fu, Pilot



Our Path

Our path begins with experimental ran-

dom assignment, both as a framework for
causal questions and a benchmark by which
the results from other methods are judged.
We illustrate the awesome power of random
assignment through two randomized evalu-
ations of the effects of health insurance. The
appendix to this chapter also uses the experi-
mental framework to review the concepts
and methods of statistical inference.

1.1 In Sickness and in Health
(Insurance)

The Affordable Care Act (ACA) has proven to
be one of the most controversial and inter-
esting policy innovations we’ve seen. The
ACA requires Americans to buy health
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insurance, with a tax penalty for those who
don’t voluntarily buy in. The question of the
proper role of government in the market for
health care has many angles. One is the caus-
al effect of health insurance on health. The
United States spends more of its GDP on
health care than do other developed nations,
yet Americans are surprisingly unhealthy.
For example, Americans are more likely to be
overweight and die sooner than their Cana-
dian cousins, who spend only about two-
thirds as much on care. America is also un-
usual among developed countries in having
no universal health insurance scheme. Per-
haps there’s a causal connection here.

Elderly Americans are covered by a federal
program called Medicare, while some poor
Americans (including most single mothers,
their children, and many other poor chil-
dren) are covered by Medicaid. Many of the
working, prime-age poor, however, have long
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been uninsured. In fact, many uninsured
Americans have chosen not to participate in

an employer-provided insurance plan.1

These workers, perhaps correctly, count on
hospital emergency departments, which can-
not turn them away, to address their health-
care needs. But the emergency department
might not be the best place to treat, say, the
flu, or to manage chronic conditions like dia-
betes and hypertension that are so pervasive
among poor Americans. The emergency de-
partment is not required to provide long-
term care. It therefore stands to reason that
government-mandated health insurance
might yield a health dividend. The push for
subsidized universal health insurance stems
in part from the belief that it does.

The ceteris paribus question in this con-
text contrasts the health of someone with in-
surance coverage to the health of the same
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person were they without insurance (other
than an emergency department backstop).
This contrast highlights a fundamental em-
pirical conundrum: people are either insured
or not. We don’t get to see them both ways,
at least not at the same time in exactly the
same circumstances.

In his celebrated poem, “The Road Not
Taken,” Robert Frost used the metaphor of a
crossroads to describe the causal effects of
personal choice:

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Frost’s traveler concludes:

Two roads diverged in a wood, and I—
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I took the one less traveled by,
And that has made all the difference.

The traveler claims his choice has mattered,
but, being only one person, he can’t be sure.
A later trip or a report by other travelers
won’t nail it down for him, either. Our nar-
rator might be older and wiser the second
time around, while other travelers might
have different experiences on the same road.
So it is with any choice, including those re-
lated to health insurance: would uninsured
men with heart disease be disease-free if
they had insurance? In the novel Light
Years, James Salter’s irresolute narrator ob-
serves: “Acts demolish their alternatives,
that is the paradox.” We can’t know what lies
at the end of the road not taken.

We can’t know, but evidence can be
brought to bear on the question. This chapter
takes you through some of the evidence
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related to paths involving health insurance.
The starting point is the National Health In-
terview Survey (NHIS), an annual survey of
the U.S. population with detailed informa-
tion on health and health insurance. Among
many other things, the NHIS asks: “Would
you say your health in general is excellent,
very good, good, fair, or poor?” We used this
question to code an index that assigns 5 to
excellent health and 1 to poor health in a
sample of married 2009 NHIS respondents

who may or may not be insured.2 This index
is our outcome: a measure we’re interested
in studying. The causal relation of interest
here is determined by a variable that indic-
ates coverage by private health insurance.
We call this variable the treatment, borrow-
ing from the literature on medical trials, al-
though the treatments we’re interested in
need not be medical treatments like drugs or
surgery. In this context, those with insurance
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can be thought of as the treatment group;
those without insurance make up the com-
parison or control group. A good control
group reveals the fate of the treated in a
counterfactual world where they are not
treated.

The first row of Table 1.1 compares the av-
erage health index of insured and uninsured
Americans, with statistics tabulated separ-

ately for husbands and wives.3 Those with
health insurance are indeed healthier than
those without, a gap of about .3 in the index
for men and .4 in the index for women.
These are large differences when measured
against the standard deviation of the health
index, which is about 1. (Standard devi-
ations, reported in square brackets in Table
1.1, measure variability in data. The chapter
appendix reviews the relevant formula.)
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These large gaps might be the health di-
vidend we’re looking for.

Fruitless and Fruitful Comparisons

Simple comparisons, such as those at the top
of Table 1.1, are often cited as evidence of
causal effects. More often than not, however,
such comparisons are misleading. Once
again the problem is other things equal, or
lack thereof. Comparisons of people with and
without health insurance are not apples to
apples; such contrasts are apples to oranges,
or worse.

Among other differences, those with
health insurance are better educated, have
higher income, and are more likely to be
working than the uninsured. This can be
seen in panel B of Table 1.1, which reports
the average characteristics of NHIS respond-
ents who do and don’t have health insurance.
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Many of the differences in the table are large
(for example, a nearly 3-year schooling gap);
most are statistically precise enough to rule
out the hypothesis that these discrepancies
are merely chance findings (see the chapter
appendix for a refresher on statistical signi-
ficance). It won’t surprise you to learn that
most variables tabulated here are highly cor-
related with health as well as with health in-
surance status. More-educated people, for
example, tend to be healthier as well as being
overrepresented in the insured group. This
may be because more-educated people exer-
cise more, smoke less, and are more likely to
wear seat belts. It stands to reason that the
difference in health between insured and un-
insured NHIS respondents at least partly re-
flects the extra schooling of the insured.
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TABLE 1.1
Health and demographic characteristics of
insured and uninsured couples in the NHIS

Notes: This table reports average characteristics for in-
sured and uninsured married couples in the 2009 National
Health Interview Survey (NHIS). Columns (1), (2), (4), and
(5) show average characteristics of the group of individuals
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specified by the column heading. Columns (3) and (6) re-
port the difference between the average characteristic for
individuals with and without health insurance (HI). Stand-
ard deviations are in brackets; standard errors are reported
in parentheses.

Our effort to understand the causal con-
nection between insurance and health is
aided by fleshing out Frost’s two-roads meta-
phor. We use the letter Y as shorthand for
health, the outcome variable of interest. To
make it clear when we’re talking about spe-
cific people, we use subscripts as a stand-in
for names: Yi is the health of individual i.
The outcome Yi is recorded in our data. But,
facing the choice of whether to pay for health
insurance, person i has two potential out-
comes, only one of which is observed. To dis-
tinguish one potential outcome from anoth-
er, we add a second subscript: The road
taken without health insurance leads to Y0i

(read this as “y-zero-i”) for person i, while
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the road with health insurance leads to Y1i

(read this as “y-one–i”) for person i. Poten-
tial outcomes lie at the end of each road one
might take. The causal effect of insurance on
health is the difference between them, writ-

ten Y1i − Y0i.4

To nail this down further, consider the
story of visiting Massachusetts Institute of
Technology (MIT) student Khuzdar Khalat,
recently arrived from Kazakhstan. Kazakh-
stan has a national health insurance system
that covers all its citizens automatically
(though you wouldn’t go there just for the
health insurance). Arriving in Cambridge,
Massachusetts, Khuzdar is surprised to learn
that MIT students must decide whether to
opt in to the university’s health insurance
plan, for which MIT levies a hefty fee. Upon
reflection, Khuzdar judges the MIT insur-
ance worth paying for, since he fears upper
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respiratory infections in chilly New England.
Let’s say that Y0i = 3 and Y1i = 4 for i =
Khuzdar. For him, the causal effect of insur-
ance is one step up on the NHIS scale:

Table 1.2 summarizes this information.
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TABLE 1.2
Outcomes and treatments for Khuzdar and

Maria

Khuzdar
Khalat

Maria
Moreño

Potential outcome
without insurance: Y0i

3 5

Potential outcome with
insurance: Y1i

4 5

Treatment (insurance
status chosen): Di

1 0

Actual health outcome:
Yi

4 5

Treatment effect: Y1i −
Y0i

1 0
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It’s worth emphasizing that Table 1.2 is an
imaginary table: some of the information it
describes must remain hidden. Khuzdar will
either buy insurance, revealing his value of
Y1i, or he won’t, in which case his Y0i is re-
vealed. Khuzdar has walked many a long and
dusty road in Kazakhstan, but even he can-
not be sure what lies at the end of those not
taken.

Maria Moreño is also coming to MIT this
year; she hails from Chile’s Andean high-
lands. Little concerned by Boston winters,
hearty Maria is not the type to fall sick easily.
She therefore passes up the MIT insurance,
planning to use her money for travel instead.
Because Maria has Y0,Maria = Y1,Maria = 5, the
causal effect of insurance on her health is
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Maria’s numbers likewise appear in Table
1.2.

Since Khuzdar and Maria make different
insurance choices, they offer an interesting
comparison. Khuzdar’s health is YKhuzdar =
Y1,Khuzdar = 4, while Maria’s is YMaria =
Y0,Maria = 5. The difference between them is

Taken at face value, this quantity—which we
observe—suggests Khuzdar’s decision to buy
insurance is counterproductive. His MIT in-
surance coverage notwithstanding, insured
Khuzdar’s health is worse than uninsured
Maria’s.

In fact, the comparison between frail
Khuzdar and hearty Maria tells us little
about the causal effects of their choices. This
can be seen by linking observed and poten-
tial outcomes as follows:
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The second line in this equation is derived by
adding and subtracting Y0,Khuzdar, thereby
generating two hidden comparisons that de-
termine the one we see. The first comparis-
on, Y1,Khuzdar − Y0,Khuzdar, is the causal effect
of health insurance on Khuzdar, which is
equal to 1. The second, Y0,Khuzdar − Y0,Maria,
is the difference between the two students’
health status were both to decide against in-
surance. This term, equal to −2, reflects
Khuzdar’s relative frailty. In the context of
our effort to uncover causal effects, the lack
of comparability captured by the second
term is called selection bias.

You might think that selection bias has
something to do with our focus on particular
individuals instead of on groups, where, per-
haps, extraneous differences can be expected
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to “average out.” But the difficult problem of
selection bias carries over to comparisons of
groups, though, instead of individual causal
effects, our attention shifts to average caus-
al effects. In a group of n people, average
causal effects are written Avgn[Y1i − Y0i],
where averaging is done in the usual way
(that is, we sum individual outcomes and di-
vide by n):

The symbol indicates a sum over every-
one from i = 1 to n, where n is the size of the
group over which we are averaging. Note
that both summations in equation (1.1) are
taken over everybody in the group of in-
terest. The average causal effect of health in-
surance compares average health in
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hypothetical scenarios where everybody in
the group does and does not have health in-
surance. As a computational matter, this is
the average of individual causal effects like
Y1,Khuzdar − Y0,Khuzdar and Y1,Maria − Y0,Maria

for each student in our data.
An investigation of the average causal ef-

fect of insurance naturally begins by compar-
ing the average health of groups of insured
and uninsured people, as in Table 1.1. This
comparison is facilitated by the construction
of a dummy variable, Di, which takes on the
values 0 and 1 to indicate insurance status:

We can now write Avgn[Yi|Di = 1] for the av-
erage among the insured and Avgn[Yi|Di =
0] for the average among the uninsured.
These quantities are averages conditional on

insurance status.5
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The average Yi for the insured is necessar-
ily an average of outcome Y1i, but contains
no information about Y0i. Likewise, the aver-
age Yi among the uninsured is an average of
outcome Y0i, but this average is devoid of in-
formation about the corresponding Y1i. In
other words, the road taken by those with in-
surance ends with Y1i, while the road taken
by those without insurance leads to Y0i. This
in turn leads to a simple but important con-
clusion about the difference in average
health by insurance status:

an expression highlighting the fact that the
comparisons in Table 1.1 tell us something
about potential outcomes, though not neces-
sarily what we want to know. We’re after
Avgn[Y1i − Y0i], an average causal effect
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involving everyone’s Y1i and everyone’s Y0i,
but we see average Y1i only for the insured
and average Y0i only for the uninsured.

To sharpen our understanding of equation
(1.2), it helps to imagine that health insur-
ance makes everyone healthier by a constant
amount, κ. As is the custom among our
people, we use Greek letters to label such
parameters, so as to distinguish them from
variables or data; this one is the letter
“kappa.” The constant-effects assumption al-
lows us to write:

or, equivalently, Y1i − Y0i = κ. In other words,
κ is both the individual and average causal
effect of insurance on health. The question at
hand is how comparisons such as those at
the top of Table 1.1 relate to κ.
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Using the constant-effects model (equa-
tion (1.3)) to substitute for Avgn[Y1i|Di = 1]
in equation (1.2), we have:

This equation reveals that health comparis-
ons between those with and without insur-
ance equal the causal effect of interest (κ)
plus the difference in average Y0i between
the insured and the uninsured. As in the par-
able of Khuzdar and Maria, this second term
describes selection bias. Specifically, the dif-
ference in average health by insurance status
can be written:
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where selection bias is defined as the differ-
ence in average Y0i between the groups being
compared.

How do we know that the difference in
means by insurance status is contaminated
by selection bias? We know because Y0i is
shorthand for everything about person i re-
lated to health, other than insurance status.
The lower part of Table 1.1 documents im-
portant noninsurance differences between
the insured and uninsured, showing that
ceteris isn’t paribus here in many ways. The
insured in the NHIS are healthier for all
sorts of reasons, including, perhaps, the
causal effects of insurance. But the insured
are also healthier because they are more edu-
cated, among other things. To see why this
matters, imagine a world in which the causal
effect of insurance is zero (that is, κ = 0).
Even in such a world, we should expect in-
sured NHIS respondents to be healthier,
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simply because they are more educated, rich-
er, and so on.

We wrap up this discussion by pointing
out the subtle role played by information like
that reported in panel B of Table 1.1. This
panel shows that the groups being compared
differ in ways that we can observe. As we’ll
see in the next chapter, if the only source of
selection bias is a set of differences in char-
acteristics that we can observe and measure,
selection bias is (relatively) easy to fix. Sup-
pose, for example, that the only source of se-
lection bias in the insurance comparison is
education. This bias is eliminated by focus-
ing on samples of people with the same
schooling, say, college graduates. Education
is the same for insured and uninsured people
in such a sample, because it’s the same for
everyone in the sample.

The subtlety in Table 1.1 arises because
when observed differences proliferate, so
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should our suspicions about unobserved dif-
ferences. The fact that people with and
without health insurance differ in many vis-
ible ways suggests that even were we to hold
observed characteristics fixed, the uninsured
would likely differ from the insured in ways
we don’t see (after all, the list of variables we
can see is partly fortuitous). In other words,
even in a sample consisting of insured and
uninsured people with the same education,
income, and employment status, the insured
might have higher values of Y0i. The princip-
al challenge facing masters of ’metrics is
elimination of the selection bias that arises
from such unobserved differences.
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Breaking the Deadlock: Just
RANDomize

My doctor gave me 6 months to live …
but when I couldn’t pay the bill, he gave
me 6 months more.

Walter Matthau

Experimental random assignment eliminates
selection bias. The logistics of a randomized
experiment, sometimes called a randomized
trial, can be complex, but the logic is simple.
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To study the effects of health insurance in a
randomized trial, we’d start with a sample of
people who are currently uninsured. We’d
then provide health insurance to a randomly
chosen subset of this sample, and let the rest
go to the emergency department if the need
arises. Later, the health of the insured and
uninsured groups can be compared. Random
assignment makes this comparison ceteris
paribus: groups insured and uninsured by
random assignment differ only in their in-
surance status and any consequences that
follow from it.

Suppose the MIT Health Service elects to
forgo payment and tosses a coin to determ-
ine the insurance status of new students
Ashish and Zandile (just this once, as a favor
to their distinguished Economics Depart-
ment). Zandile is insured if the toss comes
up heads; otherwise, Ashish gets the cover-
age. A good start, but not good enough, since
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random assignment of two experimental
subjects does not produce insured and unin-
sured apples. For one thing, Ashish is male
and Zandile female. Women, as a rule, are
healthier than men. If Zandile winds up
healthier, it might be due to her good luck in
having been born a woman and unrelated to
her lucky draw in the insurance lottery. The
problem here is that two is not enough to
tango when it comes to random assignment.
We must randomly assign treatment in a
sample that’s large enough to ensure that
differences in individual characteristics like
sex wash out.

Two randomly chosen groups, when large
enough, are indeed comparable. This fact is
due to a powerful statistical property known
as the Law of Large Numbers (LLN). The
LLN characterizes the behavior of sample av-
erages in relation to sample size. Specifically,
the LLN says that a sample average can be
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brought as close as we like to the average in
the population from which it is drawn (say,
the population of American college students)
simply by enlarging the sample.

To see the LLN in action, play dice.6 Spe-
cifically, roll a fair die once and save the res-
ult. Then roll again and average these two
results. Keep on rolling and averaging. The
numbers 1 to 6 are equally likely (that’s why
the die is said to be “fair”), so we can expect
to see each value an equal number of times if
we play long enough. Since there are six pos-
sibilities here, and all are equally likely, the
expected outcome is an equally weighted av-
erage of each possibility, with weights equal
to 1/6:
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This average value of 3.5 is called a mathem-
atical expectation; in this case, it’s the aver-
age value we’d get in infinitely many rolls of
a fair die. The expectation concept is import-
ant to our work, so we define it formally
here.

MATHEMATICAL EXPECTATION The mathematical
expectation of a variable, Yi, written
E[Yi], is the population average of this
variable. If Yi is a variable generated by a
random process, such as throwing a die,
E[Yi] is the average in infinitely many re-
petitions of this process. If Yi is a variable
that comes from a sample survey, E[Yi] is
the average obtained if everyone in the
population from which the sample is
drawn were to be enumerated.

Rolling a die only a few times, the average
toss may be far from the corresponding
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mathematical expectation. Roll two times,
for example, and you might get boxcars or
snake eyes (two sixes or two ones). These av-
erage to values well away from the expected
value of 3.5. But as the number of tosses goes
up, the average across tosses reliably tends
to 3.5. This is the LLN in action (and it’s how
casinos make a profit: in most gambling
games, you can’t beat the house in the long
run, because the expected payout for players
is negative). More remarkably, it needn’t
take too many rolls or too large a sample for
a sample average to approach the expected
value. The chapter appendix addresses the
question of how the number of rolls or the
size of a sample survey determines statistical
accuracy.

In randomized trials, experimental
samples are created by sampling from a pop-
ulation we’d like to study rather than by re-
peating a game, but the LLN works just the
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same. When sampled subjects are randomly
divided (as if by a coin toss) into treatment
and control groups, they come from the same
underlying population. The LLN therefore
promises that those in randomly assigned
treatment and control samples will be simil-
ar if the samples are large enough. For ex-
ample, we expect to see similar proportions
of men and women in randomly assigned
treatment and control groups. Random as-
signment also produces groups of about the
same age and with similar schooling levels.
In fact, randomly assigned groups should be
similar in every way, including in ways that
we cannot easily measure or observe. This is
the root of random assignment’s awesome
power to eliminate selection bias.

The power of random assignment can be
described precisely using the following defin-
ition, which is closely related to the defini-
tion of mathematical expectation.
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CONDITIONAL EXPECTATION The conditional ex-
pectation of a variable, Yi, given a dummy
variable, Di = 1, is written E[Yi|Di = 1].
This is the average of Yi in the population
that has Di equal to 1. Likewise, the con-
ditional expectation of a variable, Yi, giv-
en Di = 0, written E[Yi|Di = 0], is the av-
erage of Yi in the population that has Di

equal to 0. If Yi and Di are variables gen-
erated by a random process, such as
throwing a die under different circum-
stances, E[Yi|Di = d] is the average of in-
finitely many repetitions of this process
while holding the circumstances indic-
ated by Di fixed at d. If Yi and Di come
from a sample survey, E[Yi|Di = d] is the
average computed when everyone in the
population who has Di = d is sampled.

Because randomly assigned treatment and
control groups come from the same
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underlying population, they are the same in
every way, including their expected Y0i. In
other words, the conditional expectations,
E[Y0i|Di = 1] and E[Y0i|Di = 0], are the same.
This in turn means that:

RANDOM ASSIGNMENT ELIMINATES SELECTION BIAS

When Di is randomly assigned, E[Y0i|Di

= 1] = E[Y0i|Di = 0], and the difference in
expectations by treatment status captures
the causal effect of treatment:

Provided the sample at hand is large
enough for the LLN to work its magic (so we
can replace the conditional averages in equa-
tion (1.4) with conditional expectations), se-
lection bias disappears in a randomized
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experiment. Random assignment works not
by eliminating individual differences but
rather by ensuring that the mix of individu-
als being compared is the same. Think of this
as comparing barrels that include equal pro-
portions of apples and oranges. As we ex-
plain in the chapters that follow, randomiza-
tion isn’t the only way to generate such
ceteris paribus comparisons, but most mas-
ters believe it’s the best.

When analyzing data from a randomized
trial or any other research design, masters
almost always begin with a check on whether
treatment and control groups indeed look
similar. This process, called checking for
balance, amounts to a comparison of sample
averages as in panel B of Table 1.1. The aver-
age characteristics in panel B appear dissim-
ilar or unbalanced, underlining the fact that
the data in this table don’t come from any-
thing like an experiment. It’s worth checking
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for balance in this manner any time you find
yourself estimating causal effects.

Random assignment of health insurance
seems like a fanciful proposition. Yet health
insurance coverage has twice been randomly
assigned to large representative samples of
Americans. The RAND Health Insurance Ex-
periment (HIE), which ran from 1974 to
1982, was one of the most influential social
experiments in research history. The HIE en-
rolled 3,958 people aged 14 to 61 from six
areas of the country. The HIE sample ex-
cluded Medicare participants and most
Medicaid and military health insurance sub-
scribers. HIE participants were randomly as-
signed to one of 14 insurance plans. Parti-
cipants did not have to pay insurance premi-
ums, but the plans had a variety of provi-
sions related to cost sharing, leading to large
differences in the amount of insurance they
offered.
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The most generous HIE plan offered com-
prehensive care for free. At the other end of
the insurance spectrum, three “catastrophic
coverage” plans required families to pay 95%
of their health-care costs, though these costs
were capped as a proportion of income (or
capped at $1,000 per family, if that was
lower). The catastrophic plans approximate a
no-insurance condition. A second insurance
scheme (the “individual deductible” plan)
also required families to pay 95% of outpa-
tient charges, but only up to $150 per person
or $450 per family. A group of nine other
plans had a variety of coinsurance provi-
sions, requiring participants to cover any-
where from 25% to 50% of charges, but al-
ways capped at a proportion of income or
$1,000, whichever was lower. Participating
families enrolled in the experimental plans
for 3 or 5 years and agreed to give up any
earlier insurance coverage in return for a
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fixed monthly payment unrelated to their use

of medical care.7

The HIE was motivated primarily by an in-
terest in what economists call the price
elasticity of demand for health care. Specific-
ally, the RAND investigators wanted to know
whether and by how much health-care use
falls when the price of health care goes up.
Families in the free care plan faced a price of
zero, while coinsurance plans cut prices to
25% or 50% of costs incurred, and families in
the catastrophic coverage and deductible
plans paid something close to the sticker
price for care, at least until they hit the
spending cap. But the investigators also
wanted to know whether more comprehens-
ive and more generous health insurance cov-
erage indeed leads to better health. The an-
swer to the first question was a clear “yes”:
health-care consumption is highly
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responsive to the price of care. The answer to
the second question is murkier.

Randomized Results

Randomized field experiments are more
elaborate than a coin toss, sometimes regret-
tably so. The HIE was complicated by having
many small treatment groups, spread over
more than a dozen insurance plans. The
treatment groups associated with each plan
are mostly too small for comparisons
between them to be statistically meaningful.
Most analyses of the HIE data therefore start
by grouping subjects who were assigned to
similar HIE plans together. We do that here

as well.8

A natural grouping scheme combines
plans by the amount of cost sharing they re-
quire. The three catastrophic coverage plans,
with subscribers shouldering almost all of
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their medical expenses up to a fairly high
cap, approximate a no-insurance state. The
individual deductible plan provided more
coverage, but only by reducing the cap on
total expenses that plan participants were re-
quired to shoulder. The nine coinsurance
plans provided more substantial coverage by
splitting subscribers’ health-care costs with
the insurer, starting with the first dollar of
costs incurred. Finally, the free plan consti-
tuted a radical intervention that might be ex-
pected to generate the largest increase in
health-care usage and, perhaps, health. This
categorization leads us to four groups of
plans: catastrophic, deductible, coinsurance,
and free, instead of the 14 original plans. The
catastrophic plans provide the (approximate)
no-insurance control, while the deductible,
coinsurance, and free plans are characterized
by increasing levels of coverage.
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As with nonexperimental comparisons, a
first step in our experimental analysis is to
check for balance. Do subjects randomly as-
signed to treatment and control groups—in
this case, to health insurance schemes ran-
ging from little to complete coverage—in-
deed look similar? We gauge this by compar-
ing demographic characteristics and health
data collected before the experiment began.
Because demographic characteristics are un-
changing, while the health variables in ques-
tion were measured before random assign-
ment, we expect to see only small differences
in these variables across the groups assigned
to different plans.

In contrast with our comparison of NHIS
respondents’ characteristics by insurance
status in Table 1.1, a comparison of charac-
teristics across randomly assigned treatment
groups in the RAND experiment shows the
people assigned to different HIE plans to be
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similar. This can be seen in panel A of Table
1.3. Column (1) in this table reports averages
for the catastrophic plan group, while the re-
maining columns compare the groups as-
signed more generous insurance coverage
with the catastrophic control group. As a
summary measure, column (5) compares a
sample combining subjects in the deductible,
coinsurance, and free plans with subjects in
the catastrophic plans. Individuals assigned
to the plans with more generous coverage are
a little less likely to be female and a little less
educated than those in the catastrophic
plans. We also see some variation in income,
but differences between plan groups are
mostly small and are as likely to go one way
as another. This pattern contrasts with the
large and systematic demographic differ-
ences between insured and uninsured people
seen in the NHIS data summarized in Table
1.1.
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The small differences across groups seen
in panel A of Table 1.3 seem likely to reflect
chance variation that emerges naturally as
part of the sampling process. In any statistic-
al sample, chance differences arise because
we’re looking at one of many possible draws
from the underlying population from which
we’ve sampled. A new sample of similar size
from the same population can be expected to
produce comparisons that are simil-
ar—though not identical—to those in the
table. The question of how much variation
we should expect from one sample to anoth-
er is addressed by the tools of statistical
inference.
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TABLE 1.3
Demographic characteristics and baseline

health in the RAND HIE

77/694



Notes: This table describes the demographic character-
istics and baseline health of subjects in the RAND Health
Insurance Experiment (HIE). Column (1) shows the average
for the group assigned catastrophic coverage. Columns
(2)–(5) compare averages in the deductible, cost-sharing,
free care, and any insurance groups with the average in
column (1). Standard errors are reported in parentheses in
columns (2)–(5); standard deviations are reported in brack-
ets in column (1).

The appendix to this chapter briefly ex-
plains how to quantify sampling variation
with formal statistical tests. Such tests
amount to the juxtaposition of differences in
sample averages with their standard errors,
the numbers in parentheses reported below
the differences in averages listed in columns
(2)–(5) of Table 1.3. The standard error of a
difference in averages is a measure of its
statistical precision: when a difference in
sample averages is smaller than about two
standard errors, the difference is typically
judged to be a chance finding compatible
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with the hypothesis that the populations
from which these samples were drawn are, in
fact, the same.

Differences that are larger than about two
standard errors are said to be statistically
significant: in such cases, it is highly un-
likely (though not impossible) that these dif-
ferences arose purely by chance. Differences
that are not statistically significant are prob-
ably due to the vagaries of the sampling pro-
cess. The notion of statistical significance
helps us interpret comparisons like those in
Table 1.3. Not only are the differences in this
table mostly small, only two (for proportion
female in columns (4) and (5)) are more than
twice as large as the associated standard er-
rors. In tables with many comparisons, the
presence of a few isolated statistically signi-
ficant differences is usually also attributable
to chance. We also take comfort from the fact
that the standard errors in this table are not
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very big, indicating differences across groups
are measured reasonably precisely.

Panel B of Table 1.3 complements the con-
trasts in panel A with evidence for reason-
ably good balance in pre-treatment out-
comes across treatment groups. This panel
shows no statistically significant differences
in a pre-treatment index of general health.
Likewise, pre-treatment cholesterol, blood
pressure, and mental health appear largely
unrelated to treatment assignment, with only
a couple of contrasts close to statistical signi-
ficance. In addition, although lower choles-
terol in the free group suggests somewhat
better health than in the catastrophic group,
differences in the general health index
between these two groups go the other way
(since lower index values indicate worse
health). Lack of a consistent pattern rein-
forces the notion that these gaps are due to
chance.
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The first important finding to emerge from
the HIE was that subjects assigned to more
generous insurance plans used substantially
more health care. This finding, which vindic-
ates economists’ view that demand for a
good should go up when it gets cheaper, can

be seen in panel A of Table 1.4.9 As might be
expected, hospital inpatient admissions were
less sensitive to price than was outpatient
care, probably because admissions decisions
are usually made by doctors. On the other
hand, assignment to the free care plan raised
outpatient spending by two-thirds (169/248)
relative to spending by those in catastrophic
plans, while total medical expenses increased
by 45%. These large gaps are economically
important as well as statistically significant.

Subjects who didn’t have to worry about
the cost of health care clearly consumed
quite a bit more of it. Did this extra care and
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expense make them healthier? Panel B in
Table 1.4, which compares health indicators
across HIE treatment groups, suggests not.
Cholesterol levels, blood pressure, and sum-
mary indices of overall health and mental
health are remarkably similar across groups
(these outcomes were mostly measured 3 or
5 years after random assignment). Formal
statistical tests show no statistically signific-
ant differences, as can be seen in the group-
specific contrasts (reported in columns
(2)–(4)) and in the differences in health
between those in a catastrophic plan and
everyone in the more generous insurance
groups (reported in column (5)).

These HIE findings convinced many eco-
nomists that generous health insurance can
have unintended and undesirable con-
sequences, increasing health-care usage and
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costs, without generating a dividend in the

form of better health.10
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TABLE 1.4
Health expenditure and health outcomes in

the RAND HIE

Notes: This table reports means and treatment effects
for health expenditure and health outcomes in the RAND
Health Insurance Experiment (HIE). Column (1) shows the
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average for the group assigned catastrophic coverage.
Columns (2)–(5) compare averages in the deductible, cost-
sharing, free care, and any insurance groups with the aver-
age in column (1). Standard errors are reported in paren-
theses in columns (2)–(5); standard deviations are reported
in brackets in column (1).

1.2 The Oregon Trail

MASTER KAN: Truth is hard to understand.

KWAI CHANG CAINE: It is a fact, it is not the
truth. Truth is often hidden, like a shad-
ow in darkness.

Kung Fu, Season 1, Episode 14

The HIE was an ambitious attempt to assess
the impact of health insurance on health-
care costs and health. And yet, as far as the
contemporary debate over health insurance
goes, the HIE might have missed the mark.
For one thing, each HIE treatment group
had at least catastrophic coverage, so
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financial liability for health-care costs was
limited under every treatment. More import-
antly, today’s uninsured Americans differ
considerably from the HIE population: most
of the uninsured are younger, less educated,
poorer, and less likely to be working. The
value of extra health care in such a group
might be very different than for the middle
class families that participated in the HIE.

One of the most controversial ideas in the
contemporary health policy arena is the ex-
pansion of Medicaid to cover the currently
uninsured (interestingly, on the eve of the
RAND experiment, talk was of expanding
Medicare, the public insurance program for
America’s elderly). Medicaid now covers
families on welfare, some of the disabled,
other poor children, and poor pregnant wo-
men. Suppose we were to expand Medicaid
to cover those who don’t qualify under cur-
rent rules. How would such an expansion
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affect health-care spending? Would it shift
treatment from costly and crowded emer-
gency departments to possibly more effective
primary care? Would Medicaid expansion
improve health?

Many American states have begun to “ex-
periment” with Medicaid expansion in the
sense that they’ve agreed to broaden eligibil-
ity, with the federal government footing most
of the bill. Alas, these aren’t real experi-
ments, since everyone who is eligible for ex-
panded Medicaid coverage gets it. The most
convincing way to learn about the con-
sequences of Medicaid expansion is to ran-
domly offer Medicaid coverage to people in
currently ineligible groups. Random assign-
ment of Medicaid seems too much to hope
for. Yet, in an awesome social experiment,
the state of Oregon recently offered Medicaid
to thousands of randomly chosen people in a
publicly announced health insurance lottery.
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We can think of Oregon’s health insurance
lottery as randomly selecting winners and
losers from a pool of registrants, though cov-
erage was not automatic, even for lottery
winners. Winners won the opportunity to ap-
ply for the state-run Oregon Health Plan
(OHP), the Oregon version of Medicaid. The
state then reviewed these applications,
awarding coverage to Oregon residents who
were U.S. citizens or legal immigrants aged
19–64, not otherwise eligible for Medicaid,
uninsured for at least 6 months, with income
below the federal poverty level, and few fin-
ancial assets. To initiate coverage, lottery
winners had to document their poverty
status and submit the required paperwork
within 45 days.

The rationale for the 2008 OHP lottery
was fairness and not research, but it’s no less
awesome for that. The Oregon health insur-
ance lottery provides some of the best
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evidence we can hope to find on the costs
and benefits of insurance coverage for the
currently uninsured, a fact that motivated re-
search on OHP by MIT master Amy Finkel-

stein and her coauthors.11

Roughly 75,000 lottery applicants re-
gistered for expanded coverage through the
OHP. Of these, almost 30,000 were ran-
domly selected and invited to apply for OHP;
these winners constitute the OHP treatment
group. The other 45,000 constitute the OHP
control sample.

The first question that arises in this con-
text is whether OHP lottery winners were
more likely to end up insured as a result of
winning. This question is motivated by the
fact that some applicants qualified for regu-
lar Medicaid even without the lottery. Panel
A of Table 1.5 shows that about 14% of con-
trols (lottery losers) were covered by
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Medicaid in the year following the first OHP
lottery. At the same time, the second column,
which reports differences between the treat-
ment and control groups, shows that the
probability of Medicaid coverage increased
by 26 percentage points for lottery winners.
Column (4) shows a similar increase for the
subsample living in and around Portland,
Oregon’s largest city. The upshot is that OHP
lottery winners were insured at much higher
rates than were lottery losers, a difference
that might have affected their use of health

care and their health.12

The OHP treatment group (that is, lottery
winners) used more health-care services
than they otherwise would have. This can
also be seen in Table 1.5, which shows estim-
ates of changes in service use in the rows be-
low the estimate of the OHP effect on Medi-
caid coverage. The hospitalization rate
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increased by about half a percentage point, a
modest though statistically significant effect.
Emergency department visits, outpatient vis-
its, and prescription drug use all increased
markedly. The fact that the number of emer-
gency department visits rose about 10%, a
precisely estimated effect (the standard error
associated with this estimate, reported in
column (4), is .029), is especially note-
worthy. Many policymakers hoped and ex-
pected health insurance to shift formerly un-
insured patients away from hospital emer-
gency departments toward less costly
sources of care.
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TABLE 1.5
OHP effects on insurance coverage and

health-care use

Notes: This table reports estimates of the effect of win-
ning the Oregon Health Plan (OHP) lottery on insurance
coverage and use of health care. Odd-numbered columns
show control group averages. Even-numbered columns
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report the regression coefficient on a dummy for lottery
winners. Standard errors are reported in parentheses.

Finally, the proof of the health insurance
pudding appears in Table 1.6: lottery win-
ners in the statewide sample report a modest
improvement in the probability they assess
their health as being good or better (an effect
of .039, which can be compared with a con-
trol mean of .55; the Health is Good variable
is a dummy). Results from in-person inter-
views conducted in Portland suggest these
gains stem more from improved mental
rather than physical health, as can be seen in
the second and third rows in column (4) (the
health variables in the Portland sample are
indices ranging from 0 to 100). As in the
RAND experiment, results from Portland
suggest physical health indicators like cho-
lesterol and blood pressure were largely
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unchanged by increased access to OHP
insurance.

94/694



TABLE 1.6
OHP effects on health indicators and finan-

cial health

Notes: This table reports estimates of the effect of win-
ning the Oregon Health Plan (OHP) lottery on health indic-
ators and financial health. Odd-numbered columns show
control group averages. Even-numbered columns report the
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regression coefficient on a dummy for lottery winners.
Standard errors are reported in parentheses.

The weak health effects of the OHP lottery
disappointed policymakers who looked to
publicly provided insurance to generate a
health dividend for low-income Americans.
The fact that health insurance increased
rather than decreased expensive emergency
department use is especially frustrating. At
the same time, panel B of Table 1.6 reveals
that health insurance provided the sort of
financial safety net for which it was de-
signed. Specifically, households winning the
lottery were less likely to have incurred large
medical expenses or to have accumulated
debt generated by the need to pay for health
care. It may be this improvement in financial
health that accounts for improved mental
health in the treatment group.
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It also bears emphasizing that the financial
and health effects seen in Table 1.6 most
likely come from the 25% of the sample who
obtained insurance as a result of the lottery.
Adjusting for the fact that insurance status
was unchanged for many winners shows that
gains in financial security and mental health
for the one-quarter of applicants who were
insured as a result of the lottery were consid-
erably larger than simple comparisons of
winners and losers would suggest. Chapter 3,
on instrumental variables methods, details
the nature of such adjustments. As you’ll
soon see, the appropriate adjustment here
amounts to the division of win/loss differ-
ences in outcomes by win/loss differences in
the probability of insurance. This implies
that the effect of being insured is as much as
four times larger than the effect of winning
the OHP lottery (statistical significance is
unchanged by this adjustment).
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The RAND and Oregon findings are re-
markably similar. Two ambitious experi-
ments targeting substantially different popu-
lations show that the use of health-care ser-
vices increases sharply in response to insur-
ance coverage, while neither experiment re-
veals much of an insurance effect on physical
health. In 2008, OHP lottery winners en-
joyed small but noticeable improvements in
mental health. Importantly, and not coincid-
entally, OHP also succeeded in insulating
many lottery winners from the financial con-
sequences of poor health, just as a good in-
surance policy should. At the same time,
these studies suggest that subsidized public
health insurance should not be expected to
yield a dramatic health dividend.
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MASTER JOSHWAY: In a nutshell, please,
Grasshopper.

GRASSHOPPER: Causal inference compares
potential outcomes, descriptions of the
world when alternative roads are taken.

MASTER JOSHWAY: Do we compare those
who took one road with those who took
another?

GRASSHOPPER: Such comparisons are of-
ten contaminated by selection bias, that
is, differences between treated and con-
trol subjects that exist even in the ab-
sence of a treatment effect.

MASTER JOSHWAY: Can selection bias be
eliminated?

GRASSHOPPER: Random assignment to
treatment and control conditions elim-
inates selection bias. Yet even in ran-
domized trials, we check for balance.
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MASTER JOSHWAY: Is there a single causal
truth, which all randomized investiga-
tions are sure to reveal?

GRASSHOPPER: I see now that there can be
many truths, Master, some compatible,
some in contradiction. We therefore
take special note when findings from
two or more experiments are similar.

Masters of ’Metrics: From Daniel
to R. A. Fisher

The value of a control group was revealed in
the Old Testament. The Book of Daniel re-
counts how Babylonian King Nebuchadnez-
zar decided to groom Daniel and other Is-
raelite captives for his royal service. As
slavery goes, this wasn’t a bad gig, since the
king ordered his captives be fed “food and
wine from the king’s table.” Daniel was un-
easy about the rich diet, however, preferring
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modest vegetarian fare. The king’s chamber-
lains initially refused Daniel’s special meals
request, fearing that his diet would prove in-
adequate for one called on to serve the king.
Daniel, not without chutzpah, proposed a
controlled experiment: “Test your servants
for ten days. Give us nothing but vegetables
to eat and water to drink. Then compare our
appearance with that of the young men who
eat the royal food, and treat your servants in
accordance with what you see” (Daniel 1,
12–13). The Bible recounts how this experi-
ment supported Daniel’s conjecture regard-
ing the relative healthfulness of a vegetarian
diet, though as far as we know Daniel himself
didn’t get an academic paper out of it.

Nutrition is a recurring theme in the quest
for balance. Scurvy, a debilitating disease
caused by vitamin C deficiency, was the
scourge of the British Navy. In 1742, James
Lind, a surgeon on HMS Salisbury,
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experimented with a cure for scurvy. Lind
chose 12 seamen with scurvy and started
them on an identical diet. He then formed
six pairs and treated each of the pairs with a
different supplement to their daily food ra-
tion. One of the additions was an extra two
oranges and one lemon (Lind believed an
acidic diet might cure scurvy). Though Lind
did not use random assignment, and his
sample was small by our standards, he was a
pioneer in that he chose his 12 study mem-
bers so they were “as similar as I could have
them.” The citrus eaters—Britain’s first
limeys—were quickly and incontrovertibly
cured, a life-changing empirical finding that
emerged from Lind’s data even though his

theory was wrong.13

Almost 150 years passed between Lind and
the first recorded use of experimental ran-
dom assignment. This was by Charles Peirce,
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an American philosopher and scientist, who
experimented with subjects’ ability to detect
small differences in weight. In a less-than-
fascinating but methodologically significant
1885 publication, Peirce and his student
Joseph Jastrow explained how they varied
experimental conditions according to draws

from a pile of playing cards.14

The idea of a randomized controlled trial
emerged in earnest only at the beginning of
the twentieth century, in the work of
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statistician and geneticist Sir Ronald Aylmer
Fisher, who analyzed data from agricultural
experiments. Experimental random assign-
ment features in Fisher’s 1925 Statistical
Methods for Research Workers and is de-
tailed in his landmark The Design of Experi-

ments, published in 1935.15

Fisher had many fantastically good ideas
and a few bad ones. In addition to explaining
the value of random assignment, he invented
the statistical method of maximum likeli-
hood. Along with ’metrics master Sewall
Wright (and J.B.S. Haldane), he launched
the field of theoretical population genetics.
But he was also a committed eugenicist and a
proponent of forced sterilization (as was re-
gression master Sir Francis Galton, who
coined the term “eugenics”). Fisher, a
lifelong pipe smoker, was also on the wrong
side of the debate over smoking and health,
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due in part to his strongly held belief that
smoking and lung cancer share a common
genetic origin. The negative effect of
smoking on health now seems well estab-
lished, though Fisher was right to worry
about selection bias in health research. Many
lifestyle choices, such as low-fat diets and
vitamins, have been shown to be unrelated to
health outcomes when evaluated with ran-
dom assignment.

Appendix: Mastering Inference

YOUNG CAINE: I am puzzled.

MASTER PO: That is the beginning of
wisdom.

Kung Fu, Season 2, Episode 25

This is the first of a number of appendices
that fill in key econometric and statistical
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details. You can spend your life studying
statistical inference; many masters do. Here
we offer a brief sketch of essential ideas and
basic statistical tools, enough to understand
tables like those in this chapter.

The HIE is based on a sample of parti-
cipants drawn (more or less) at random from
the population eligible for the experiment.
Drawing another sample from the same pop-
ulation, we’d get somewhat different results,
but the general picture should be similar if
the sample is large enough for the LLN to
kick in. How can we decide whether statistic-
al results constitute strong evidence or
merely a lucky draw, unlikely to be replicated
in repeated samples? How much sampling
variance should we expect? The tools of
formal statistical inference answer these
questions. These tools work for all of the eco-
nometric strategies of concern to us. Quanti-
fying sampling uncertainty is a necessary
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step in any empirical project and on the road
to understanding statistical claims made by
others. We explain the basic inference idea
here in the context of HIE treatment effects.

The task at hand is the quantification of
the uncertainty associated with a particular
sample average and, especially, groups of av-
erages and the differences among them. For
example, we’d like to know if the large differ-
ences in health-care expenditure across HIE
treatment groups can be discounted as a
chance finding. The HIE samples were
drawn from a much larger data set that we
think of as covering the population of in-
terest. The HIE population consists of all
families eligible for the experiment (too
young for Medicare and so on). Instead of
studying the many millions of such families,
a much smaller group of about 2,000 famil-
ies (containing about 4,000 people) was se-
lected at random and then randomly
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allocated to one of 14 plans or treatment
groups. Note that there are two sorts of ran-
domness at work here: the first pertains to
the construction of the study sample and the
second to how treatment was allocated to
those who were sampled. Random sampling
and random assignment are closely related
but distinct ideas.

A World without Bias

We first quantify the uncertainty induced by
random sampling, beginning with a single
sample average, say, the average health of
everyone in the sample at hand, as measured
by a health index. Our target is the corres-
ponding population average health index,
that is, the mean over everyone in the popu-
lation of interest. As we noted on p. 14, the
population mean of a variable is called its
mathematical expectation, or just
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expectation for short. For the expectation of
a variable, Yi, we write E[Yi]. Expectation is
intimately related to formal notions of prob-
ability. Expectations can be written as a
weighted average of all possible values that
the variable Yi can take on, with weights giv-
en by the probability these values appear in
the population. In our dice-throwing ex-
ample, these weights are equal and given by
1/6 (see Section 1.1).

Unlike our notation for averages, the sym-
bol for expectation does not reference the
sample size. That’s because expectations are
population quantities, defined without refer-
ence to a particular sample of individuals.
For a given population, there is only one
E[Yi], while there are many Avgn[Yi], de-
pending on how we choose n and just who
ends up in our sample. Because E[Yi] is a
fixed feature of a particular population, we
call it a parameter. Quantities that vary from
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one sample to another, such as the sample
average, are called sample statistics.

At this point, it’s helpful to switch from
Avgn[Yi] to a more compact notation for av-
erages, ?. Note that we’re dispensing with the
subscript n to avoid clutter—henceforth, it’s
on you to remember that sample averages
are computed in a sample of a particular size.
The sample average, ?, is a good estimator of
E[Yi] (in statistics, an estimator is any func-
tion of sample data used to estimate para-
meters). For one thing, the LLN tells us that
in large samples, the sample average is likely
to be very close to the corresponding popula-
tion mean. A related property is that the ex-
pectation of ? is also E[Yi]. In other words, if
we were to draw infinitely many random
samples, the average of the resulting ? across
draws would be the underlying population
mean. When a sample statistic has expecta-
tion equal to the corresponding population
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parameter, it’s said to be an unbiased estim-
ator of that parameter. Here’s the sample
mean’s unbiasedness property stated
formally:

UNBIASEDNESS OF THE SAMPLE MEAN E[?] = E[Yi]

The sample mean should not be expected
to be bang on the corresponding population
mean: the sample average in one sample
might be too big, while in other samples it
will be too small. Unbiasedness tells us that
these deviations are not systematically up or
down; rather, in repeated samples they aver-
age out to zero. This unbiasedness property
is distinct from the LLN, which says that the
sample mean gets closer and closer to the
population mean as the sample size grows.
Unbiasedness of the sample mean holds for
samples of any size.
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Measuring Variability

In addition to averages, we’re interested in
variability. To gauge variability, it’s custom-
ary to look at average squared deviations
from the mean, in which positive and negat-
ive gaps get equal weight. The resulting sum-
mary of variability is called variance.

The sample variance of Yi in a sample of
size n is defined as

The corresponding population variance re-
places averages with expectations, giving:

Like E[Yi], the quantity V(Yi) is a fixed fea-
ture of a population—a parameter. It’s
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therefore customary to christen it in Greek:

, which is read as “sigma-squared-y.”16

Because variances square the data they can
be very large. Multiply a variable by 10 and
its variance goes up by 100. Therefore, we of-
ten describe variability using the square root
of the variance: this is called the standard
deviation, written σY. Multiply a variable by
10 and its standard deviation increases by
10. As always, the population standard devi-
ation, σY, has a sample counterpart S(Yi), the

square root of S(Yi)2.
Variance is a descriptive fact about the dis-

tribution of Yi. (Reminder: the distribution
of a variable is the set of values the variable
takes on and the relative frequency that each
value is observed in the population or gener-
ated by a random process.) Some variables
take on a narrow set of values (like a dummy
variable indicating families with health
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insurance), while others (like income) tend
to be spread out with some very high values
mixed in with many smaller ones.

It’s important to document the variability
of the variables you’re working with. Our
goal here, however, goes beyond this. We’re
interested in quantifying the variance of the
sample mean in repeated samples. Since the
expectation of the sample mean is E[Yi](from
the unbiasedness property), the population
variance of the sample mean can be written
as

The variance of a statistic like the sample
mean is distinct from the variance used for
descriptive purposes. We write V(?) for the
variance of the sample mean, while V(Yi) (or

) denotes the variance of the underlying
data. Because the quantity V(?) measures the
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variability of a sample statistic in repeated
samples, as opposed to the dispersion of raw
data, V(?) has a special name: sampling
variance.

Sampling variance is related to descriptive
variance, but, unlike descriptive variance,
sampling variance is also determined by
sample size. We show this by simplifying the
formula for V(?). Start by substituting the
formula for ? inside the notation for
variance:

To simplify this expression, we first note that
random sampling ensures the individual ob-
servations in a sample are not systematically
related to one another; in other words, they
are statistically independent. This important
property allows us to take advantage of the
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fact that the variance of a sum of statistically
independent observations, each drawn ran-
domly from the same population, is the sum
of their variances. Moreover, because each Yi

is sampled from the same population, each
draw has the same variance, . Finally, we
use the property that the variance of a con-
stant (like 1/n) times Yi is the square of this
constant times the variance of Yi. From these
considerations, we get

Simplifying further, we have

We’ve shown that the sampling variance of
a sample average depends on the variance of
the underlying observations, , and the
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sample size, n. As you might have guessed,
more data means less dispersion of sample
averages in repeated samples. In fact, when
the sample size is very large, there’s almost
no dispersion at all, because when n is large,

is small. This is the LLN at work: as n ap-
proaches infinity, the sample average ap-
proaches the population mean, and sampling
variance disappears.

In practice, we often work with the stand-
ard deviation of the sample mean rather than
its variance. The standard deviation of a stat-
istic like the sample average is called its
standard error. The standard error of the
sample mean can be written as

Every estimate discussed in this book has
an associated standard error. This includes
sample means (for which the standard error
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formula appears in equation (1.6)), differ-
ences in sample means (discussed later in
this appendix), regression coefficients (dis-
cussed in Chapter 2), and instrumental vari-
ables and other more sophisticated estim-
ates. Formulas for standard errors can get
complicated, but the idea remains simple.
The standard error summarizes the variabil-
ity in an estimate due to random sampling.
Again, it’s important to avoid confusing
standard errors with the standard deviations
of the underlying variables; the two quantit-
ies are intimately related yet measure differ-
ent things.

One last step on the road to standard er-
rors: most population quantities, including
the standard deviation in the numerator of
(1.6), are unknown and must be estimated.
In practice, therefore, when quantifying the
sampling variance of a sample mean, we
work with an estimated standard error. This
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is obtained by replacing σY with S(Yi) in the
formula for SE(?). Specifically, the estimated
standard error of the sample mean can be
written as

We often forget the qualifier “estimated”
when discussing statistics and their standard
errors, but that’s still what we have in mind.
For example, the numbers in parentheses in
Table 1.4 are estimated standard errors for
the relevant differences in means.

The t-Statistic and the Central Limit
Theorem

Having laid out a simple scheme to measure
variability using standard errors, it remains
to interpret this measure. The simplest inter-
pretation uses a t-statistic. Suppose the data

119/694

text/part0008.html#t1-4


at hand come from a distribution for which
we believe the population mean, E[Yi], takes
on a particular value, μ (read this Greek let-
ter as “mu”). This value constitutes a work-
ing hypothesis. A t-statistic for the sample
mean under the working hypothesis that
E[Yi] = μ is constructed as

The working hypothesis is a reference point
that is often called the null hypothesis. When
the null hypothesis is μ = 0, the t-statistic is
the ratio of the sample mean to its estimated
standard error.

Many people think the science of statistical
inference is boring, but in fact it’s nothing
short of miraculous. One miraculous statist-
ical fact is that if E[Yi] is indeed equal to μ,
then—as long as the sample is large
enough—the quantity t(μ) has a sampling
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distribution that is very close to a bell-
shaped standard normal distribution,
sketched in Figure 1.1. This property, which
applies regardless of whether Yi itself is nor-
mally distributed, is called the Central Limit
Theorem (CLT). The CLT allows us to make
an empirically informed decision as to
whether the available data support or cast
doubt on the hypothesis that E[Yi] equals μ.

FIGURE 1.1
A standard normal distribution

121/694

text/part0008.html#f1-1


The CLT is an astonishing and powerful
result. Among other things, it implies that
the (large-sample) distribution of a t-statistic
is independent of the distribution of the un-
derlying data used to calculate it. For ex-
ample, suppose we measure health status
with a dummy variable distinguishing
healthy people from sick and that 20% of the
population is sick. The distribution of this
dummy variable has two spikes, one of
height .8 at the value 1 and one of height .2
at the value 0. The CLT tells us that with
enough data, the distribution of the t-statist-
ic is smooth and bell-shaped even though the
distribution of the underlying data has only
two values.

We can see the CLT in action through a
sampling experiment. In sampling experi-
ments, we use the random number generator
in our computer to draw random samples of
different sizes over and over again. We did
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this for a dummy variable that equals one
80% of the time and for samples of size 10,
40, and 100. For each sample size, we calcu-
lated the t-statistic in half a million random
samples using .8 as our value of μ.

Figures 1.2–1.4 plot the distribution of
500,000 t-statistics calculated for each of the
three sample sizes in our experiment, with
the standard normal distribution superim-
posed. With only 10 observations, the
sampling distribution is spiky, though the
outlines of a bell-shaped curve also emerge.
As the sample size increases, the fit to a nor-
mal distribution improves. With 100 obser-
vations, the standard normal is just about
bang on.

The standard normal distribution has a
mean of 0 and standard deviation of 1. With
any standard normal variable, values larger
than ±2 are highly unlikely. In fact, realiza-
tions larger than 2 in absolute value appear
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only about 5% of the time. Because the t-
statistic is close to normally distributed, we
similarly expect it to fall between about ±2
most of the time. Therefore, it’s customary to
judge any t-statistic larger than about 2 (in
absolute value) as too unlikely to be consist-
ent with the null hypothesis used to con-
struct it. When the null hypothesis is μ = 0
and the t-statistic exceeds 2 in absolute
value, we say the sample mean is signific-
antly different from zero. Otherwise, it’s not.
Similar language is used for other values of μ
as well.
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FIGURE 1.2
The distribution of the t-statistic for the

mean in a sample of size 10

Note: This figure shows the distribution of the sample
mean of a dummy variable that equals 1 with probability .8.
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FIGURE 1.3
The distribution of the t-statistic for the

mean in a sample of size 40

Note: This figure shows the distribution of the sample
mean of a dummy variable that equals 1 with probability .8.
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FIGURE 1.4
The distribution of the t-statistic for the

mean in a sample of size 100

Note: This figure shows the distribution of the sample
mean of a dummy variable that equals 1 with probability .8.

We might also turn the question of statist-
ical significance on its side: instead of check-
ing whether the sample is consistent with a
specific value of μ, we can construct the set
of all values of μ that are consistent with the
data. The set of such values is called a
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confidence interval for E[Yi]. When calcu-
lated in repeated samples, the interval

should contain E[Yi] about 95% of the time.
This interval is therefore said to be a 95%
confidence interval for the population mean.
By describing the set of parameter values
consistent with our data, confidence inter-
vals provide a compact summary of the in-
formation these data contain about the pop-
ulation from which they were sampled.

Pairing Off

One sample average is the loneliest number
that you’ll ever do. Luckily, we’re usually
concerned with two. We’re especially keen to
compare averages for subjects in experi-
mental treatment and control groups. We
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reference these averages with a compact

notation, writing ?1 for Avgn[Yi|Di = 1] and

?0 for Avgn[Yi|Di = 0]. The treatment group

mean, ?1, is the average for the n1 observa-
tions belonging to the treatment group, with

?0 defined similarly. The total sample size is
n = n0 + n1.

For our purposes, the difference between

?1 and ?0 is either an estimate of the causal
effect of treatment (if Yi is an outcome), or a
check on balance (if Yi is a covariate). To
keep the discussion focused, we’ll assume the
former. The most important null hypothesis
in this context is that treatment has no effect,
in which case the two samples used to con-
struct treatment and control averages come
from the same population. On the other
hand, if treatment changes outcomes, the
populations from which treatment and con-
trol observations are drawn are necessarily
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different. In particular, they have different

means, which we denote μ1 and μ0.
We decide whether the evidence favors the

hypothesis that μ1 = μ0 by looking for statist-
ically significant differences in the corres-
ponding sample averages. Statistically signi-
ficant results provide strong evidence of a
treatment effect, while results that fall short
of statistical significance are consistent with
the notion that the observed difference in
treatment and control means is a chance
finding. The expression “chance finding” in
this context means that in a hypothetical ex-
periment involving very large samples—so
large that any sampling variance is effect-
ively eliminated—we’d find treatment and
control means to be the same.

Statistical significance is determined by
the appropriate t-statistic. A key ingredient
in any t recipe is the standard error that lives
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downstairs in the t ratio. The standard error
for a comparison of means is the square root

of the sampling variance of ?1 − ?0. Using the
fact that the variance of a difference between
two statistically independent variables is the
sum of their variances, we have

The second equality here uses equation (1.5),
which gives the sampling variance of a single
average. The standard error we need is
therefore

In deriving this expression, we’ve assumed
that the variances of individual observations
are the same in treatment and control
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groups. This assumption allows us to use one
symbol, , for the common variance. A
slightly more complicated formula allows
variances to differ across groups even if the
means are the same (an idea taken up again
in the discussion of robust regression stand-

ard errors in the appendix to Chapter 2).17

Recognizing that must be estimated, in
practice we work with the estimated stand-
ard error

where S(Yi) is the pooled sample standard
deviation. This is the sample standard devi-
ation calculated using data from both treat-
ment and control groups combined.

Under the null hypothesis that μ1 − μ0 is
equal to the value μ, the t-statistic for a dif-
ference in means is
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We use this t-statistic to test working hypo-
theses about μ1 − μ0 and to construct confid-
ence intervals for this difference. When the
null hypothesis is one of equal means (μ =
0), the statistic t(μ) equals the difference in
sample means divided by the estimated
standard error of this difference. When the t-
statistic is large enough to reject a difference
of zero, we say the estimated difference is
statistically significant. The confidence inter-
val for a difference in means is the difference
in sample means plus or minus two standard
errors.

Bear in mind that t-statistics and confid-
ence intervals have little to say about wheth-
er findings are substantively large or small. A
large t-statistic arises when the estimated ef-
fect of interest is large but also when the
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associated standard error is small (as hap-
pens when you’re blessed with a large
sample). Likewise, the width of a confidence
interval is determined by statistical precision
as reflected in standard errors and not by the
magnitude of the relationships you’re trying
to uncover. Conversely, t-statistics may be
small either because the difference in the es-
timated averages is small or because the
standard error of this difference is large. The
fact that an estimated difference is not signi-
ficantly different from zero need not imply
that the relationship under investigation is
small or unimportant. Lack of statistical sig-
nificance often reflects lack of statistical pre-
cision, that is, high sampling variance.
Masters are mindful of this fact when dis-
cussing econometric results.

1 For more on this surprising fact, see Jonathan Gruber,
“Covering the Uninsured in the United States,” Journal of

134/694

text/part0008.html#ch_fn1


Economic Literature, vol. 46, no. 3, September 2008, pages
571–606.

2 Our sample is aged 26–59 and therefore does not yet
qualify for Medicare.

3 An Empirical Notes section after the last chapter gives
detailed notes for this table and most of the other tables and
figures in the book.

4 Robert Frost’s insights notwithstanding, econometrics
isn’t poetry. A modicum of mathematical notation allows us
to describe and discuss subtle relationships precisely. We
also use italics to introduce repeatedly used terms, such as
potential outcomes, that have special meaning for masters
of ’metrics.

5 Order the n observations on Yi so that the n0 observa-
tions from the group indicated by Di = 0 precede the n1 ob-
servations from the Di = 1 group. The conditional average

is the sample average for the n0 observations in the Di = 0
group. The term Avgn[Yi|Di = 1] is calculated analogously
from the remaining n1 observations.

6 Six-sided cubes with one to six dots engraved on each
side. There’s an app for ’em on your smartphone.

7 Our description of the HIE follows Robert H. Brook et
al., “Does Free Care Improve Adults’ Health? Results from a
Randomized Controlled Trial,” New England Journal of
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Medicine, vol. 309, no. 23, December 8, 1983, pages
1426–1434. See also Aviva Aron-Dine, Liran Einav, and
Amy Finkelstein, “The RAND Health Insurance Experi-
ment, Three Decades Later,” Journal of Economic Perspect-
ives, vol. 27, Winter 2013, pages 197–222, for a recent
assessment.

8 Other HIE complications include the fact that instead of
simply tossing a coin (or the computer equivalent), RAND
investigators implemented a complex assignment scheme
that potentially affects the statistical properties of the res-
ulting analyses (for details, see Carl Morris, “A Finite Selec-
tion Model for Experimental Design of the Health Insurance
Study,” Journal of Econometrics, vol. 11, no. 1, September
1979, pages 43–61). Intentions here were good, in that the
experimenters hoped to insure themselves against chance
deviation from perfect balance across treatment groups.
Most HIE analysts ignore the resulting statistical complica-
tions, though many probably join us in regretting this at-
tempt to gild the random assignment lily. A more serious
problem arises from the large number of HIE subjects who
dropped out of the experiment and the large differences in
attrition rates across treatment groups (fewer left the free
plan, for example). As noted by Aron-Dine, Einav, and
Finkelstein, “The RAND Experiment,” Journal of Economic
Perspectives, 2013, differential attrition may have com-
promised the experiment’s validity. Today’s “randomistas”
do better on such nuts-and-bolts design issues (see, for ex-
ample, the experiments described in Abhijit Banerjee and
Esther Duflo, Poor Economics: A Radical Rethinking of the
Way to Fight Global Poverty, Public Affairs, 2011).
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9 The RAND results reported here are based on our own
tabulations from the HIE public use file, as described in the
Empirical Notes section at the end of the book. The original
RAND results are summarized in Joseph P. Newhouse et al.,
Free for All? Lessons from the RAND Health Insurance Ex-
periment, Harvard University Press, 1994.

10 Participants in the free plan had slightly better correc-
ted vision than those in the other plans; see Brook et al.,
“Does Free Care Improve Health?” New England Journal of
Medicine, 1983, for details.

11 See Amy Finkelstein et al., “The Oregon Health Insur-
ance Experiment: Evidence from the First Year,” Quarterly
Journal of Economics, vol. 127, no. 3, August 2012, pages
1057–1106; Katherine Baicker et al., “The Oregon Experi-
ment—Effects of Medicaid on Clinical Outcomes,” New
England Journal of Medicine, vol. 368, no. 18, May 2, 2013,
pages 1713–1722; and Sarah Taubman et al., “Medicaid In-
creases Emergency Department Use: Evidence from Ore-
gon’s Health Insurance Experiment,” Science, vol. 343, no.
6168, January 17, 2014, pages 263–268.

12 Why weren’t all OHP lottery winners insured? Some
failed to submit the required paperwork on time, while
about half of those who did complete the necessary forms in
a timely fashion turned out to be ineligible on further
review.

13 Lind’s experiment is described in Duncan P. Thomas,
“Sailors, Scurvy, and Science,” Journal of the Royal Society
of Medicine, vol. 90, no. 1, January 1997, pages 50–54.
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14 Charles S. Peirce and Joseph Jastrow, “On Small Dif-
ferences in Sensation,” Memoirs of the National Academy
of Sciences, vol. 3, 1885, pages 75–83.

15 Ronald A. Fisher, Statistical Methods for Research
Workers, Oliver and Boyd, 1925, and Ronald A. Fisher, The
Design of Experiments, Oliver and Boyd, 1935.

16 Sample variances tend to underestimate population
variances. Sample variance is therefore sometimes defined
as

that is, dividing by n − 1 instead of by n. This modified for-
mula provides an unbiased estimate of the corresponding
population variance.

17 Using separate variances for treatment and control ob-
servations, we have

where V1(Yi) is the variance of treated observations, and

V0(Yi) is the variance of control observations.
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Chapter 2

Regression

KWAI CHANG CAINE: A worker is known by
his tools. A shovel for a man who digs.
An ax for a woodsman. The econometri-
cian runs regressions.

Kung Fu, Season 1, Episode 8

Our Path



When the path to random assignment is

blocked, we look for alternate routes to caus-
al knowledge. Wielded skillfully, ’metrics
tools other than random assignment can
have much of the causality-revealing power
of a real experiment. The most basic of these
tools is regression, which compares treat-
ment and control subjects who have the
same observed characteristics. Regression
concepts are foundational, paving the way
for the more elaborate tools used in the
chapters that follow. Regression-based caus-
al inference is predicated on the assumption
that when key observed variables have been
made equal across treatment and control
groups, selection bias from the things we
can’t see is also mostly eliminated. We illus-
trate this idea with an empirical investiga-
tion of the economic returns to attendance at
elite private colleges.

140/694



2.1 A Tale of Two Colleges

Students who attended a private four-year
college in America paid an average of about
$29,000 in tuition and fees in the
2012–2013 school year. Those who went to a
public university in their home state paid
less than $9,000. An elite private education
might be better in many ways: the classes
smaller, the athletic facilities newer, the fac-
ulty more distinguished, and the students
smarter. But $20,000 per year of study is a
big difference. It makes you wonder whether
the difference is worth it.

The apples-to-apples question in this case
asks how much a 40-year-old
Massachusetts-born graduate of, say, Har-
vard, would have earned if he or she had
gone to the University of Massachusetts (U-
Mass) instead. Money isn’t everything, but,
as Groucho Marx observed: “Money frees
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you from doing things you dislike. Since I
dislike doing nearly everything, money is
handy.” So when we ask whether the private
school tuition premium is worth paying, we
focus on the possible earnings gain enjoyed
by those who attend elite private universit-
ies. Higher earnings aren’t the only reason
you might prefer an elite private institution
over your local state school. Many college
students meet a future spouse and make last-
ing friendships while in college. Still, when
families invest an additional $100,000 or
more in human capital, a higher anticipated
earnings payoff seems likely to be part of the
story.

Comparisons of earnings between those
who attend different sorts of schools invari-
ably reveal large gaps in favor of elite-college
alumni. Thinking this through, however, it’s
easy to see why comparisons of the earnings
of students who attended Harvard and U-
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Mass are unlikely to reveal the payoff to a
Harvard degree. This comparison reflects the
fact that Harvard grads typically have better
high school grades and higher SAT scores,
are more motivated, and perhaps have other
skills and talents. No disrespect intended for
the many good students who go to U-Mass,
but it’s damn hard to get into Harvard, and
those who do are a special and select group.
In contrast, U-Mass accepts and even awards
scholarship money to almost every Mas-
sachusetts applicant with decent tenth-grade
test scores. We should therefore expect earn-
ings comparisons across alma maters to be
contaminated by selection bias, just like the
comparisons of health by insurance status
discussed in the previous chapter. We’ve also
seen that this sort of selection bias is elimin-
ated by random assignment. Regrettably, the
Harvard admissions office is not yet
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prepared to turn their admissions decisions
over to a random number generator.

The question of whether college selectivity
matters must be answered using the data
generated by the routine application, admis-
sion, and matriculation decisions made by
students and universities of various types.
Can we use these data to mimic the random-
ized trial we’d like to run in this context? Not
to perfection, surely, but we may be able to
come close. The key to this undertaking is
the fact that many decisions and choices, in-
cluding those related to college attendance,
involve a certain amount of serendipitous
variation generated by financial considera-
tions, personal circumstances, and timing.

Serendipity can be exploited in a sample of
applicants on the cusp, who could easily go
one way or the other. Does anyone admitted
to Harvard really go to their local state
school instead? Our friend and former MIT
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PhD student, Nancy, did just that. Nancy
grew up in Texas, so the University of Texas
(UT) was her state school. UT’s flagship
Austin campus is rated “Highly Competitive”
in Barron’s rankings, but it’s not Harvard.
UT is, however, much less expensive than
Harvard (The Princeton Review recently
named UT Austin a “Best Value College”).
Admitted to both Harvard and UT, Nancy
chose UT over Harvard because the UT ad-
missions office, anxious to boost average
SAT scores on campus, offered Nancy and a
few other outstanding applicants an espe-
cially generous financial aid package, which
Nancy gladly accepted.

What are the consequences of Nancy’s de-
cision to accept UT’s offer and decline Har-
vard’s? Things worked out pretty well for
Nancy in spite of her choice of UT over Har-
vard: today she’s an economics professor at
another Ivy League school in New England.
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But that’s only one example. Well, actually,
it’s two: Our friend Mandy got her bachelor’s
from the University of Virginia, her home
state school, declining offers from Duke,
Harvard, Princeton, and Stanford. Today,
Mandy teaches at Harvard.

A sample of two is still too small for reli-
able causal inference. We’d like to compare
many people like Mandy and Nancy to many
other similar people who chose private col-
leges and universities. From larger group
comparisons, we can hope to draw general
lessons. Access to a large sample is not
enough, however. The first and most import-
ant step in our effort to isolate the serendip-
itous component of school choice is to hold
constant the most obvious and important
differences between students who go to
private and state schools. In this manner, we
hope (though cannot promise) to make other
things equal.

146/694



Here’s a small-sample numerical example
to illustrate the ceteris paribus idea (we’ll
have more data when the time comes for real
empirical work). Suppose the only things
that matter in life, at least as far as your
earnings go, are your SAT scores and where
you go to school. Consider Uma and Harvey,
both of whom have a combined reading and

math score of 1,400 on the SAT.1 Uma went
to U-Mass, while Harvey went to Harvard.
We start by comparing Uma’s and Harvey’s
earnings. Because we’ve assumed that all
that matters for earnings besides college
choice is the combined SAT score, Uma vs.
Harvey is a ceteris paribus comparison.

In practice, of course, life is more complic-
ated. This simple example suggests one sig-
nificant complication: Uma is a young wo-
man, and Harvey is a young man. Women
with similar educational qualifications often
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earn less than men, perhaps due to discrim-
ination or time spent out of the labor market
to have children. The fact that Harvey earns
20% more than Uma may be the effect of a
superior Harvard education, but it might just
as well reflect a male-female wage gap gener-
ated by other things.

We’d like to disentangle the pure Harvard
effect from these other things. This is easy if
the only other thing that matters is gender:
replace Harvey with a female Harvard stu-
dent, Hannah, who also has a combined SAT
of 1,400, comparing Uma and Hannah. Fin-
ally, because we’re after general conclusions
that go beyond individual stories, we look for
many similar same-sex and same-SAT con-
trasts across the two schools. That is, we
compute the average earnings difference
among Harvard and U-Mass students with
the same gender and SAT score. The average
of all such group-specific Harvard versus U-
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Mass differences is our first shot at estimat-
ing the causal effect of a Harvard education.
This is an econometric matching estimator
that controls for—that is, holds fixed—sex
and SAT scores. Assuming that, conditional
on sex and SAT scores, the students who at-
tend Harvard and U-Mass have similar earn-
ings potential, this estimator captures the av-
erage causal effect of a Harvard degree on
earnings.

Matchmaker, Matchmaker

Alas, there’s more to earnings than sex,
schools, and SAT scores. Since college at-
tendance decisions aren’t randomly as-
signed, we must control for all factors that
determine both attendance decisions and
later earnings. These factors include student
characteristics, like writing ability, diligence,
family connections, and more. Control for
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such a wide range of factors seems daunting:
the possibilities are virtually infinite, and
many characteristics are hard to quantify.
But Stacy Berg Dale and Alan Krueger came

up with a clever and compelling shortcut.2

Instead of identifying everything that might
matter for college choice and earnings, they
work with a key summary measure: the char-
acteristics of colleges to which students ap-
plied and were admitted.

Consider again the tale of Uma and Har-
vey: both applied to, and were admitted to,
U-Mass and Harvard. The fact that Uma ap-
plied to Harvard suggests she has the motiv-
ation to go there, while her admission to
Harvard suggests she has the ability to suc-
ceed there, just like Harvey. At least that’s
what the Harvard admissions office thinks,

and they are not easily fooled.3 Uma never-
theless opts for a cheaper U-Mass education.
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Her choice might be attributable to factors
that are not closely related to Uma’s earnings
potential, such as a successful uncle who
went to U-Mass, a best friend who chose U-
Mass, or the fact that Uma missed the dead-
line for that easily won Rotary Club scholar-
ship that would have funded an Ivy League
education. If such serendipitous events were
decisive for Uma and Harvey, then the two of
them make a good match.

Dale and Krueger analyzed a large data set
called College and Beyond (C&B). The C&B
data set contains information on thousands
of students who enrolled in a group of mod-
erately to highly selective U.S. colleges and
universities, together with survey informa-
tion collected from the students at the time
they took the SAT, about a year before col-
lege entry, and information collected in
1996, long after most had graduated from
college. The analysis here focuses on
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students who enrolled in 1976 and who were
working in 1995 (most adult college gradu-
ates are working). The colleges include pres-
tigious private universities, like the
University of Pennsylvania, Princeton, and
Yale; a number of smaller private colleges,
like Swarthmore, Williams, and Oberlin; and
four public universities (Michigan, The
University of North Carolina, Penn State,
and Miami University in Ohio). The average
(1978) SAT scores at these schools ranged
from a low of 1,020 at Tulane to a high of
1,370 at Bryn Mawr. In 1976, tuition rates
were as low as $540 at the University of
North Carolina and as high as $3,850 at
Tufts (those were the days).

Table 2.1 details a stripped-down version
of the Dale and Krueger matching strategy,
in a setup we call the “college matching mat-
rix.” This table lists applications, admissions,
and matriculation decisions for a (made-up)
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list of nine students, each of whom applied to
as many as three schools chosen from an
imaginary list of six. Three out of the six
schools listed in the table are public (All
State, Tall State, and Altered State) and three
are private (Ivy, Leafy, and Smart). Five of
our nine students (numbers 1, 2, 4, 6, and 7)
attended private schools. Average earnings
in this group are $92,000. The other four,
with average earnings of $72,500, went to a
public school. The almost $20,000 gap
between these two groups suggests a large
private school advantage.
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TABLE 2.1
The college matching matrix

Note: Enrollment decisions are highlighted in gray.

The students in Table 2.1 are organized in
four groups defined by the set of schools to
which they applied and were admitted. With-
in each group, students are likely to have
similar career ambitions, while they were
also judged to be of similar ability by admis-
sions staff at the schools to which they
applied. Within-group comparisons should
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therefore be considerably more apples-to-
apples than uncontrolled comparisons in-
volving all students.

The three group A students applied to two
private schools, Leafy and Smart, and one
public school, Tall State. Although these stu-
dents were rejected at Leafy, they were ad-
mitted to Smart and Tall State. Students 1
and 2 went to Smart, while student 3 opted
for Tall State. The students in group A have
high earnings, and probably come from up-
per middle class families (a signal here is
that they applied to more private schools
than public). Student 3, though admitted to
Smart, opted for cheaper Tall State, perhaps
to save her family money (like our friends
Nancy and Mandy). Although the students in
group A have done well, with high average
earnings and a high rate of private school at-
tendance, within group A, the private school
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differential is negative: (110 + 100)/2 − 110 =
−5, in other words, a gap of −$5,000.

The comparison in group A is one of a
number of possible matched comparisons in
the table. Group B includes two students,
each of whom applied to one private and two
public schools (Ivy, All State, and Altered
State). The students in group B have lower
average earnings than those in group A. Both
were admitted to all three schools to which
they applied. Number 4 enrolled at Ivy, while
number 5 chose Altered State. The earnings
differential here is $30,000 (60 − 30 = 30).
This gap suggests a substantial private
school advantage.

Group C includes two students who ap-
plied to a single school (Leafy), where they
were admitted and enrolled. Group C earn-
ings reveal nothing about the effects of
private school attendance, because both stu-
dents in this group attended private school.
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The two students in group D applied to three
schools, were admitted to two, and made dif-
ferent choices. But these two students chose
All State and Tall State, both public schools,
so their earnings also reveal nothing about
the value of a private education. Groups C
and D are uninformative, because, from the
perspective of our effort to estimate a private
school treatment effect, each is composed of
either all-treated or all-control individuals.

Groups A and B are where the action is in
our example, since these groups include pub-
lic and private school students who applied
to and were admitted to the same set of
schools. To generate a single estimate that
uses all available data, we average the group-
specific estimates. The average of −$5,000
for group A and $30,000 for group B is
$12,500. This is a good estimate of the effect
of private school attendance on average
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earnings, because, to a large degree, it con-
trols for applicants’ choices and abilities.

The simple average of treatment-control
differences in groups A and B isn’t the only
well-controlled comparison that can be com-
puted from these two groups. For example,
we might construct a weighted average
which reflects the fact that group B includes
two students and group A includes three.
The weighted average in this case is calcu-
lated as

By emphasizing larger groups, this weighting
scheme uses the data more efficiently and
may therefore generate a statistically more
precise summary of the private-public earn-
ings differential.

The most important point in this context is
the apples-to-apples and oranges-to-oranges
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nature of the underlying matched comparis-
ons. Apples in group A are compared to oth-
er group A apples, while oranges in group B
are compared only with oranges. In contrast,
naive comparisons that simply compare the
earnings of private and public school stu-
dents generate a much larger gap of $19,500
when computed using all nine students in
the table. Even when limited to the five stu-
dents in groups A and B, the uncontrolled
comparison generates a gap of $20,000 (20
= (110 + 100 + 60)/3 − (110 + 30)/2). These
much larger uncontrolled comparisons re-
flect selection bias: students who apply to
and are admitted to private schools have
higher earnings wherever they ultimately
chose to go.

Evidence of selection bias emerges from a
comparison of average earnings across (in-
stead of within) groups A and B. Average
earnings in group A, where two-thirds apply
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to private schools, are around $107,000.
Average earnings in group B, where two-
thirds apply to public schools, are only
$45,000. Our within-group comparisons re-
veal that much of this shortfall is unrelated
to students’ college attendance decisions.
Rather, the cross-group differential is ex-
plained by a combination of ambition and
ability, as reflected in application decisions
and the set of schools to which students were
admitted.

2.2 Make Me a Match, Run Me a
Regression

Regression is the tool that masters pick up
first, if only to provide a benchmark for more
elaborate empirical strategies. Although re-
gression is a many-splendored thing, we
think of it as an automated matchmaker.

160/694



Specifically, regression estimates are
weighted averages of multiple matched com-
parisons of the sort constructed for the
groups in our stylized matching matrix (the
appendix to this chapter discusses a closely
related connection between regression and
mathematical expectation).

The key ingredients in the regression re-
cipe are
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▪ the dependent variable, in this case,
student i’s earnings later in life, also
called the outcome variable (de-
noted by Yi);

▪ the treatment variable, in this case, a
dummy variable that indicates stu-
dents who attended a private college
or university (denoted by Pi); and

▪ a set of control variables, in this
case, variables that identify sets of
schools to which students applied
and were admitted.

In our matching matrix, the five students
in groups A and B (Table 2.1) contribute use-
ful data, while students in groups C and D
can be discarded. In a data set containing
those left after discarding groups C and D, a
single variable indicating the students in
group A tells us which of the two groups the
remaining students are in, because those not
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in group A are in group B. This variable,
which we’ll call Ai, is our sole control. Note
that both Pi and Ai are dummy variables, that
is, they equal 1 to indicate observations in a
specific state or condition, and 0 otherwise.
Dummies, as they are called (no reference to
ability here), classify data into simple yes-or-
no categories. Even so, by coding many dum-
mies, we get a set of control variables that’s

as detailed as we like.4

The regression model in this context is an
equation linking the treatment variable to
the dependent variable while holding control
variables fixed by including them in the
model. With only one control variable, Ai,
the regression of interest can be written as

The distinction between the treatment vari-
able, Pi, and the control variable, Ai, in
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equation (2.1) is conceptual, not formal:
there is nothing in equation (2.1) to indicate
which is which. Your research question and
empirical strategy justify the choice of vari-
ables and determine the roles they play.

As in the previous chapter, here we also
use Greek letters for parameters to distin-
guish them from the variables in the model.
The regression parameters—called regres-
sion coefficients—are

▪ the intercept, α (“alpha”);

▪ the causal effect of treatment, β
(“beta”);

▪ and the effect of being a group A stu-
dent, γ (“gamma”).

The last component of equation (2.1) is the
residual, ei (also called an error term). Re-
siduals are defined as the difference between
the observed Yi and the fitted values
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generated by the specific regression model
we have in mind. These fitted values are
written as

and the corresponding residuals are given by

Regression analysis assigns values to model
parameters (α, β, and γ) so as to make Ŷi as
close as possible to Yi. This is accomplished
by choosing values that minimize the sum of
squared residuals, leading to the moniker or-
dinary least squares (OLS) for the resulting

estimates.5 Executing this minimization in a
particular sample, we are said to be estimat-
ing regression parameters. ’Metrics masters,
who estimate regression models every day,
are sometimes said to “run regressions,”
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though often it seems that regressions run us
rather than the other way around. The form-
alities of regression estimation and the stat-
istical theory that goes with it are sketched in
the appendix to this chapter.

Running regression (2.1) on data for the
five students in groups A and B generates the
following estimates (these estimates can be
computed using a hand calculator, but for
real empirical work, we use professional re-
gression software):

The private school coefficient in this case is
10,000, implying a private-public earnings
differential of $10,000. This is indeed a
weighted average of our two group-specific
effects (recall the group A effect is −5,000
and the group B effect is 30,000). While this
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is neither the simple unweighted average
(12,500) nor the group-size weighted average
(9,000), it’s not too far from either of them.
In this case, regression assigns a weight of
4/7 to group A and 3/7 to group B. As with
these other averages, the regression-
weighted average is considerably smaller
than the uncontrolled earnings gap between

private and public school alumni.6

Regression estimates (and the associated
standard errors used to quantify their
sampling variance) are readily constructed
using computers and econometric software.
Computational simplicity and the conceptual
interpretation of regression estimates as a
weighted average of group-specific differ-
ences are two of the reasons we regress.
Regression also has two more things going
for it. First, it’s a convention among masters
to report regression estimates in almost
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every econometric investigation of causal ef-
fects, including those involving treatment
variables that take on more than two values.
Regression estimates provide a simple
benchmark for fancier techniques. Second,
under some circumstances, regression estim-
ates are efficient in the sense of providing the
most statistically precise estimates of aver-
age causal effects that we can hope to obtain
from a given sample. This technical point is
reviewed briefly in the chapter appendix.

Public-Private Face-Off

The C&B data set includes more than 14,000
former students. These students were admit-
ted and rejected at many different combina-
tions of schools (C&B asked for the names of
at least three schools students considered
seriously, besides the one attended). Many of
the possible application/acceptance sets in
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this data set are represented by only a single
student. Moreover, in some sets with more
than one student, all schools are either pub-
lic or private. Just as with groups C and D in
Table 2.1, these perfectly homogeneous
groups provide no guidance as to the value of
a private education.

We can increase the number of useful
comparisons by deeming schools to be
matched if they are equally selective instead
of insisting on identical matches. To fatten
up the groups this scheme produces, we’ll
call schools comparable if they fall into the

same Barron’s selectivity categories.7

Returning to our stylized matching matrix,
suppose All State and Tall State are rated as
Competitive, Altered State and Smart are
rated Highly Competitive, and Ivy and Leafy
are Most Competitive. In the Barron’s
scheme, those who applied to Tall State,
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Smart, and Leafy, and were admitted to Tall
State and Smart can be compared with stu-
dents who applied to All State, Smart, and
Ivy, and were admitted to All State and
Smart. Students in both groups applied to
one Competitive, one Highly Competitive,
and one Most Competitive school, and they
were admitted to one Competitive and one
Highly Competitive school.

In the C&B data, 9,202 students can be
matched in this way. But because we’re in-
terested in public-private comparisons, our
Barron’s matched sample is also limited to
matched applicant groups that contain both
public and private school students. This
leaves 5,583 matched students for analysis.
These matched students fall into 151 similar-
selectivity groups containing both public and
private students.

Our operational regression model for the
Barron’s selectivity-matched sample differs
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from regression (2.1), used to analyze the
matching matrix in Table 2.1, in a number of
ways. First, the operational model puts the
natural log of earnings on the left-hand side
instead of earnings itself. As explained in the
chapter appendix, use of a logged dependent
variable allows regression estimates to be in-
terpreted as a percent change. For example,
an estimated β of .05 implies that private
school alumni earn about 5% more than pub-
lic school alumni, conditional on whatever
controls were included in the model.

Another important difference between our
operational empirical model and the Table
2.1 example is that the former includes many
control variables, while the example controls
only for the dummy variable Ai, indicating
students in group A. The key controls in the
operational model are a set of many dummy
variables indicating all Barron’s matches
represented in the sample (with one group
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left out as a reference category). These con-
trols capture the relative selectivity of the
schools to which students applied and were
admitted in the real world, where many com-
binations of schools are possible. The result-
ing regression model looks like

The parameter β in this model is still the
treatment effect of interest, an estimate of
the causal effect of attendance at a private
school. But this model controls for 151
groups instead of the two groups in our ex-
ample. The parameters γj, for j = 1 to 150, are
the coefficients on 150 selectivity-group
dummies, denoted GROUPji.

It’s worth unpacking the notation in equa-
tion (2.2), since we’ll use it again. The
dummy variable GROUPji equals 1 when
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student i is in group j and is 0 otherwise. For
example, the first of these dummies, denoted
GROUP1i, might indicate students who ap-
plied and were admitted to three Highly
Competitive schools. The second, GROUP2i,
might indicate students who applied to two
Highly Competitive schools and one Most
Competitive school, and were admitted to
one of each type. The order in which the cat-
egories are coded doesn’t matter as long as
we code dummies for all possible combina-
tions, with one group omitted as a reference
group. Although we’ve gone from one group
dummy to 150, the idea is as before: con-
trolling for the sets of schools to which stu-
dents applied and were admitted brings us
one giant step closer to a ceteris paribus
comparison between private and public
school students.

A final modification for operational pur-
poses is the addition of two further control
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variables: individual SAT scores (SATi) and
the log of parental income (PIi), plus a few

variables we’ll relegate to a footnote.8 The in-
dividual SAT and log parental income con-
trols appear in the model with coefficients δ1

and δ2 (read as “delta-1” and “delta-2”), re-
spectively. Controls for a direct measure of
individual aptitude, like students’ SAT
scores, and a measure of family background,
like parental income, may help make the
public-private comparisons at the heart of
our model more apples-to-apples and
oranges-to-oranges than they otherwise
would be. At the same time, conditional on
selectivity-group dummies, such controls
may no longer matter, a point explored in
detail below.

Regressions Run
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We start with regression estimates of the
private school earnings advantage from
models with no controls. The coefficient
from a regression of log earnings (in 1995)
on a dummy for private school attendance,
with no other regressors (right-hand side
variables) in the model, gives the raw differ-
ence in log earnings between those who at-
tended a private school and everyone else
(the chapter appendix explains why regres-
sion on a single dummy variable produces a
difference in means across groups defined by
the dummy). Not surprisingly, this raw gap,
reported in the first column of Table 2.2,
shows a substantial private school premium.
Specifically, private school students are es-
timated to have earnings about 14% higher
than the earnings of other students.

The numbers that appear in parentheses
below the regression estimates in Table 2.2
are the estimated standard errors that go
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with these estimates. Like the standard er-
rors for a difference in means discussed in
the appendix to Chapter 1, these standard er-
rors quantify the statistical precision of the
regression estimates reported here. The
standard error associated with the estimate
in column (1) is .055. The fact that .135 is
more than twice the size of the associated
standard error of .055 makes it very unlikely
the positive estimated private-school gap is
merely a chance finding. The private school
coefficient is statistically significant.
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TABLE 2.2
Private school effects: Barron’s matches

Notes: This table reports estimates of the effect of at-
tending a private college or university on earnings. Each
column reports coefficients from a regression of log earn-
ings on a dummy for attending a private institution and
controls. The results in columns (4)–(6) are from models
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that include applicant selectivity-group dummies. The
sample size is 5,583. Standard errors are reported in
parentheses.

The large private school premium reported
in column (1) of Table 2.2 is an interesting
descriptive fact, but, as in our example calcu-
lation, some of this gap is almost certainly
due to selection bias. As we show below,
private school students have higher SAT
scores and come from wealthier families
than do public school students, and so might
be expected to earn more regardless of where
they went to college. We therefore control for
measures of ability and family background
when estimating the private school premi-
um. An estimate of the private school premi-
um from a regression model that includes an
individual SAT control is reported in column
(2) of Table 2.2. Every 100 points of SAT
achievement are associated with about a 5
percentage point earnings gain. Controlling
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for students’ SAT scores reduces the meas-
ured private school premium to about .1. Ad-
ding controls for parental income, as well as
for demographic characteristics related to
race and sex, high school rank, and whether
the graduate was a college athlete brings the
private school premium down a little further,
to a still substantial and statistically signific-
ant .086, reported in column (3) of the table.

A substantial effect indeed, but probably
still too big, that is, contaminated by positive
selection bias. Column (4) reports estimates
from a model with no controls for ability,
family background, or demographic charac-
teristics. Importantly, however, the regres-
sion model used to construct the estimate re-
ported in this column includes a dummy for
each matched college selectivity group in the
sample. That is, the model used to construct
this estimate includes the dummy variables
GROUPji, for j = 1, …, 150 (the table omits
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the many estimated γj this model produces,
but indicates their inclusion in the row
labeled “selection controls”). The estimated
private school premium with selectivity-
group controls included is almost bang on 0,
with a standard error of about .04. And that’s
not all: having killed the private school
premium with selectivity-group dummies,
columns (5) and (6) show that the premium
moves little when controls for ability and
family background are added to the model.
This suggests that control for college applica-
tion and admissions selectivity groups takes
us a long way toward the apples-to-apples
and oranges-to-oranges comparisons at the
heart of any credible regression strategy for
causal inference.

The results in columns (4)–(6) of Table
2.2 are generated by the subsample of 5,583
students for whom we can construct Barron’s
matches and generate within-group
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comparisons of public and private school
students. Perhaps there’s something special
about this limited sample, which contains
less than half of the full complement of C&B
respondents. This concern motivates a less
demanding control scheme that includes
only the average SAT score in the set of
schools students applied to plus dummies for
the number of schools applied to (that is, a
dummy for students who applied to two
schools, a dummy for students who applied
to three schools, and so on), instead of a full
set of 150 selectivity-group dummies. This
regression, which can be estimated in the full
C&B sample, is christened the “self-revela-
tion model” because it’s motivated by the no-
tion that applicants have a pretty good idea
of their ability and where they’re likely to be
admitted. This self-assessment is reflected in
the number and average selectivity of the
schools to which they apply. As a rule,
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weaker applicants apply to fewer and to less-
selective schools than do stronger applicants.

The self-revelation model generates results
remarkably similar to those generated by
Barron’s matches. The self-revelation estim-
ates, computed in a sample of 14,238 stu-
dents, can be seen in Table 2.3. As before,
the first three columns of the table show that
the raw private school premium falls
markedly, but remains substantial, when
controls for ability and family background
are added to the model (falling in this case,
from .21 to .14). At the same time, columns
(4)–(6) show that models controlling for the
number and average selectivity of the schools
students apply to generate small and statist-
ically insignificant effects on the order of .03.
Moreover, as with the models that control
for Barron’s matches, models with average
selectivity controls generate estimates that
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are largely insensitive to the inclusion of
controls for ability and family background.

Private university attendance seems unre-
lated to future earnings once we control for
selection bias. But perhaps our focus on
public-private comparisons misses the point.
Students may benefit from attending schools
like Ivy, Leafy, or Smart simply because their
classmates at such schools are so much bet-
ter. The synergy generated by a strong peer
group may be the feature that justifies the
private school price tag.

We can explore this hypothesis by repla-
cing the private school dummy in the self-
revelation model with a measure of peer
quality. Specifically, as in the original Dale
and Krueger study that inspires our analysis,
we replace Pi in equation (2.2) with the aver-
age SAT score of classmates at the school at-

tended.9 Columns (1)–(3) of Table 2.4 show
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that students who attended more selective
schools do markedly better in the labor mar-
ket, with an estimated college selectivity ef-
fect on the order of 8% higher earnings for
every 100 points of average selectivity in-
crease. Yet, this effect too appears to be an
artifact of selection bias due to the greater
ambition and ability of those who attend se-
lective schools. Estimates from models with
self-revelation controls, reported in columns
(4)–(6) of the table, show average college se-
lectivity to be essentially unrelated to
earnings.
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TABLE 2.3
Private school effects: Average SAT score

controls
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Notes: This table reports estimates of the effect of at-
tending a private college or university on earnings. Each
column shows coefficients from a regression of log earnings
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on a dummy for attending a private institution and controls.
The sample size is 14,238. Standard errors are reported in
parentheses.
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TABLE 2.4
School selectivity effects: Average SAT score

controls
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Notes: This table reports estimates of the effect of alma
mater selectivity on earnings. Each column shows coeffi-
cients from a regression of log earnings on the average SAT
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score at the institution attended and controls. The sample
size is 14,238. Standard errors are reported in parentheses.

2.3 Ceteris Paribus?

TOPIC: Briefly describe experiences, chal-
lenges, and accomplishments that define
you as a person.

ESSAY: I am a dynamic figure, often seen
scaling walls and crushing ice. I cook
Thirty-Minute Brownies in twenty
minutes. I am an expert in stucco, a vet-
eran in love, and an outlaw in Peru. On
Wednesdays, after school, I repair elec-
trical appliances free of charge.

I am an abstract artist, a concrete ana-
lyst, and a ruthless bookie. I wave,
dodge, and frolic, yet my bills are all
paid. I have won bullfights in San Juan,
cliff-diving competitions in Sri Lanka,
and spelling bees at the Kremlin. I have
played Hamlet, I have performed open-
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heart surgery, and I have spoken with
Elvis.

But I have not yet gone to college.
From an essay by Hugh Gallagher, age
19.
(Hugh later went to New York
University.)

Imagine Harvey and Uma on the day ad-
missions letters go out. Both are delighted to
get into Harvard (it must be those 20-minute
brownies). Harvey immediately accepts Har-
vard’s offer—wouldn’t you? But Uma makes
a difficult choice and goes to U-Mass instead.
What’s up with Uma? Is her ceteris really
paribus?

Uma might have good reasons to opt for
less-prestigious U-Mass over Harvard. Price
is an obvious consideration (Uma won a
Massachusetts Adams Scholarship, which
pays state school tuition for good students

191/694



like her but cannot be used at private
schools). If price matters more to Uma than
to Harvey, it’s possible that Uma’s circum-
stances differ from Harvey’s in other ways.
Perhaps she’s poorer. Some of our regression
models control for parental income, but this
is an imperfect measure of family living
standards. Among other things, we don’t
know how many brothers and sisters the stu-
dents in the C&B sample had. A larger family
at the same income level may find it harder
to pay for each child’s education. If family
size is also related to later earnings (see
Chapter 3 for more on this point), our re-
gression estimates of private college premia
may not be apples-to-apples after all.

This is more than a campfire story.
Regression is a way to make other things
equal, but equality is generated only for vari-
ables included as controls on the right-hand
side of the model. Failure to include enough
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controls or the right controls still leaves us
with selection bias. The regression version of
the selection bias generated by inadequate
controls is called omitted variables bias
(OVB), and it’s one of the most important
ideas in the ’metrics canon.

To illustrate OVB, we return to our five-
student example and the bias from omitting
control for membership in applicant group
A. The “long regression” here includes the
dummy variable, Ai, which indicates those in
group A. We write the regression model that
includes Ai as

This is equation (2.1) rewritten with super-
script l on parameters and the residual to re-
mind us that the intercept and private school
coefficient are from the long model, and to
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facilitate comparisons with the short model
to come.

Does the inclusion of Ai matter for estim-
ates of the private school effect in the regres-
sion above? Suppose we make do with a
short regression with no controls. This can
be written as

Because the single regressor here is a
dummy variable, the slope coefficient in this
model is the difference in average Yi between
those with Pi switched on and those with Pi

switched off. As we noted in Section 2.1, βs =
20,000 in the short regression, while the

long regression parameter, βl, is only 10,000.

The difference between βs and βl is the OVB
due to omission of Ai in the short regression.
Here, OVB amounts to $10,000, a figure
worth worrying about.
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Why does the omission of the group A
dummy change the private college effect so
much? Recall that the average earnings of
students in group A exceeds the average
earnings of those in group B. Moreover, two-
thirds of the students in high-earning group
A attended a private school, while lower-
earning group B is only half private. Differ-
ences in earnings between private and public
alumni come in part from the fact that the
mostly private students in group A have
higher earnings anyway, regardless of where
they enrolled. Inclusion of the group A
dummy in the long regression controls for
this difference.

As this discussion suggests, the formal
connection between short and long regres-
sion coefficients has two components:

(i) The relationship between the omit-
ted variable (Ai) and the treatment
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variable (Pi); we’ll soon see how to
quantify this with an additional
regression.

(ii) The relationship between the omit-
ted variable (Ai) and the outcome
variable (Yi). This is given by the
coefficient on the omitted variable
in the long regression, in this case,
the parameter γ in equation (2.3).

Together, these pieces produce the OVB for-
mula. We start with the fact that

To be specific, when the omitted variable is
Ai and the treatment variable is Pi, we have
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Omitted variables bias, defined as the differ-
ence between the coefficient on Pi in the
short and long models, is a simple rearrange-
ment of this equation:

We can refine the OVB formula using the
fact that both terms in the formula are them-
selves regression coefficients. The first term
is the coefficient from a regression of the
omitted variable Ai on the private school
dummy. In other words, this term is the
coefficient π1 (read “pi-1”) in the regression
model
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where ui is a residual. We can now write the
OVB formula compactly in Greek:

where γ is the coefficient on Ai in the long re-
gression. This important formula is derived
in the chapter appendix.

Among students who attended private
school, two are in group A and one in group
B, while among those who went to public
school, one is in group A and one in group B.
The coefficient π1 in our five-student ex-
ample is therefore 2/3 − 1/2 = .1667. As
noted in Section 2.2, the coefficient γ is
60,000, reflecting the higher earnings of
group A. Putting the pieces together, we have
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and

Phew! The calculation suggested by the OVB
formula indeed matches the direct comparis-
on of short and long regression coefficients.

The OVB formula is a mathematical result
that explains differences between regression
coefficients in any short-versus-long scen-
ario, irrespective of the causal interpretation
of the regression parameters. The labels
“short” and “long” are purely relative: The
short regression need not be particularly
short, but the long regression is always
longer, since it includes the same regressors
plus at least one more. Often, the additional
variables that make the long regression long
are hypothetical, that is, unavailable in our
data. The OVB formula is a tool that allows

199/694



us to consider the impact of control for vari-
ables we wish we had. This in turn helps us
assess whether ceteris is indeed paribus.
Which brings us back to Uma and Harvey.

Suppose an omitted variable in equation
(2.2) is family size, FSi. We’ve included par-
ental income as a control variable, but not
the number of brothers and sisters who
might also go to college, which is not avail-
able in the C&B data set. When the omitted
variable is FSi, we have

Why might the omission of family size bias
regression estimates of the private college ef-
fect? Because differences in earnings
between Harvard and U-Mass graduates
arise in part from differences in family size
between the two groups of students (this is

200/694

text/part0009.html#eq2-2
text/part0009.html#eq2-2


the relationship between FSi and Pi) and
from the fact that smaller families are associ-
ated with higher earnings, even after con-
trolling for the variables included in the
short regression (this is the effect of FSi in
the long regression, which includes these
same controls as well). The long regression
controls for the fact that students who go to
Harvard come from smaller families (on av-
erage) than do students who went to U-
Mass, while the short regression that omits
FSi does not.

The first term in this application of the
OVB formula is the coefficient in a regres-
sion of omitted (FSi) on included (Pi) vari-
ables and everything else that appears on the
right-hand side of equation (2.2). This re-
gression—which is sometimes said to be
“auxiliary” because it helps us interpret the
regression we care about—can be written as
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Most of the coefficients in equation (2.4) are
of little interest. What matters here is π1,
since this captures the relationship between
the omitted variable, FSi, and the variable
whose effect we’re after, Pi, after controlling
for other variables that appear in both the

short and long regression models.10

To complete the OVB formula for this case,
we write the long regression as

again using superscript l for “long.” The re-

gressor FSi appears here with coefficient λ.11

The OVB formula is therefore
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where β is from equation (2.2).
Continuing to think of equation (2.2) as

the short regression, while the long regres-
sion includes the control variables that ap-
pear in this model plus family size, we see
that OVB here is probably positive. Private
school students tend to come from smaller
families on average, even after conditioning
on family income. If so, the regression coeffi-
cient linking family size and private college
attendance is negative (π1 < 0 in equation
(2.4)). Students from smaller families are
also likely to earn more no matter where they
go to school, so the effect of omitting family
size controls in a long regression is also neg-
ative (λ < 0 in equation (2.5)). The product of
these two negative terms is positive.

Careful reasoning about OVB is an essen-
tial part of the ’metrics game. We can’t use
data to check the consequences of omitting
variables that we don’t observe, but we can
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use the OVB formula to make an educated
guess as to the likely consequences of their
omission. Most of the control variables that
might be omitted from equation (2.2) are
similar to family size in that the sign of the
OVB from their omission is probably posit-
ive. From this we conclude that, as small as
the estimates of the effects of private school
attendance in columns (4)–(6) of Tables
2.2–2.3 are, they could well be too big. These
estimates therefore weigh strongly against
the hypothesis of a substantial private school
earnings advantage.

Regression Sensitivity Analysis

Because we can never be sure whether a giv-
en set of controls is enough to eliminate se-
lection bias, it’s important to ask how sensit-
ive regression results are to changes in the
list of controls. Our confidence in regression
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estimates of causal effects grows when treat-
ment effects are insensitive—masters say
“robust”—to whether a particular variable is
added or dropped as long as a few core con-
trols are always included in the model. This
desirable pattern is illustrated by columns
(4)–(6) in Tables 2.2–2.3, which show that
estimates of the private school premium are
insensitive to the inclusion of students’ abil-
ity (as measured by own SAT scores), parent-
al income, and a few other control variables,
once we control for the nature of the schools
to which students applied.

The OVB formula explains this remarkable
finding. Start with Table 2.5, which reports
coefficients from regressions like equation
(2.4), except that instead of FSi, we put SATi

on the left-hand side to produce the estim-
ates in columns (1)–(3) while ln PIi on the
left-hand side generates columns (4)–(6).
These auxiliary regressions assess the
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relationship between private school attend-
ance and two of our controls, SATi and ln PIi,
conditional on other controls in the model.
Not surprisingly, private school attendance
is a strong predictor of students’ own SAT
scores and family income, relationships doc-
umented in columns (1) and (4) in the table.
The addition of demographic controls, high
school rank, and a dummy for athletic parti-
cipation does little to change this, as can be
seen in columns (2) and (5). But control for
the number of applications and the average
SAT score of schools applied to, as in the
self-revelation model, effectively eliminates
the relationship between private school at-
tendance and these important background
variables. This explains why the estimated
private school coefficients in columns (4),
(5), and (6) of Table 2.3 are essentially the
same.
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TABLE 2.5
Private school effects: Omitted variables bias

Notes: This table describes the relationship between
private school attendance and personal characteristics.
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Dependent variables are the respondent’s SAT score (di-
vided by 100) in columns (1)–(3) and log parental income in
columns (4)–(6). Each column shows the coefficient from a
regression of the dependent variable on a dummy for at-
tending a private institution and controls. The sample size is
14,238. Standard errors are reported in parentheses.

The OVB formula is the Prime Directive of
applied econometrics, so let’s rock it with our
numbers and see how it works out. For illus-
tration, we’ll take the short model to be a re-
gression of log wages on Pi with no controls
and the long model to be the regression that
adds individual SAT scores. The short (no
controls) coefficient on Pi in column (1) of
Table 2.3 is .212, while the corresponding
long coefficient (controlling for SATi) in
column (2) is .152. As can also be seen in
column (2) of the table, the effect of SATi in
the long regression is .051. The first column
in Table 2.5 shows that the regression of
omitted SATi on included Pi produces a
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coefficient of 1.165. Putting these together,
we have OVB, two ways:

Compare this with the parallel calculation
taking us from column (4) to column (5) in
Table 2.3. These columns report results from
models that include self-revelation controls.
Here, Short − Long is small: .034 − .031 =
.003, to be precise. Both the short and long
regressions include selectivity controls from
the self-revelation model, as does the relev-
ant auxiliary regression of own SAT scores
on Pi. With self-revelation controls included
in both models, we have
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(Rounding error with small numbers pushes
us off of the target of .003.) The effect of the
omitted SATi in the long regression falls here
from .051 to .036, while the regression of
omitted on included goes from a hefty 1.165
to something an order of magnitude smaller
at .066 (shown in column (3) of Table 2.5).
This shows that, conditional on the number
and average selectivity of schools applied to,
students who chose private and public
schools aren’t very different, at least as far as
their own SAT scores go. Consequently, the
gap between short and long estimates
disappears.

Because our estimated private school ef-
fect is insensitive to the inclusion of the
available ability and family background vari-
ables once the self-revelation controls are in-
cluded, other control variables, including
those for which we have no data, might mat-
ter little as well. In other words, any
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remaining OVB due to uncontrolled differ-

ences is probably modest.12 This circumstan-
tial evidence for modest OVB doesn’t guar-
antee that the regression results discussed in
this chapter have the same causal force as
results from a randomized trial—we’d still
rather have a real experiment. At a minim-
um, however, these findings call into ques-
tion claims for a substantial earnings advant-
age due to attendance at expensive private
colleges.

MASTER STEVEFU: In a nutshell, please,
Grasshopper.

GRASSHOPPER: Causal comparisons com-
pare like with like. In assessing the ef-
fects of college choice, we focus on stu-
dents with similar characteristics.
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MASTER STEVEFU: Each is different in a
thousand ways. Must all ways be
similar?

GRASSHOPPER: Good comparisons elimin-
ate systematic differences between those
who chose one path and those who
choose another, when such differences
are associated with outcomes.

MASTER STEVEFU: How is this
accomplished?

GRASSHOPPER: The method of matching
sorts individuals into groups with the
same values of control variables, like
measures of ability and family back-
ground. Matched comparisons within
these groups are then averaged to get a
single overall effect.

MASTER STEVEFU: And regression?

GRASSHOPPER: Regression is an auto-
mated matchmaker. The regression
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estimate of a causal effect is also an av-
erage of within-group comparisons.

MASTER STEVEFU: What is the Tao of OVB?

GRASSHOPPER: OVB is the difference
between short and long regression coef-
ficients. The long regression includes
additional controls, those omitted from
the short. Short equals long plus the ef-
fect of omitted in long times the regres-
sion of omitted on included.

MASTER JOSHWAY: Nothing omitted here,
Grasshopper.

Masters of ’Metrics: Galton and
Yule

The term “regression” was coined by Sir
Francis Galton, Charles Darwin’s half-cous-
in, in 1886. Galton had many interests, but
he was gripped by Darwin’s masterpiece, The
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Origin of Species. Galton hoped to apply
Darwin’s theory of evolution to variation in
human traits. In the course of his research,
Galton studied attributes ranging from fin-
gerprints to beauty. He was also one of many
British intellectuals to use Darwin in the sin-
ister service of eugenics. This regrettable di-
version notwithstanding, his work in theor-
etical statistics had a lasting and salutary ef-
fect on social science. Galton laid the statist-
ical foundations for quantitative social sci-
ence of the sort that grips us.

214/694



Galton discovered that the average heights
of fathers and sons are linked by a regression
equation. He also uncovered an interesting
implication of this particular regression
model: the average height of sons is a
weighted average of their fathers’ height and
the average height in the population from
which the fathers and sons were sampled.
Thus, parents who are taller than average
will have children who are not quite as tall,
while parents who are shorter than average
will have children who are a bit taller. To be
specific, Master Stevefu, who is 6′3″, can ex-
pect his children to be tall, though not as tall
as he is. Thankfully, however, Master Josh-
way, who is 5′6″ on a good day, can expect
his children to attain somewhat grander
stature.

Galton explained this averaging phe-
nomenon in his celebrated 1886 paper
“Regression towards Mediocrity in
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Hereditary Stature.”13 Today, we call this
property “regression to the mean.” Regres-
sion to the mean is not a causal relationship.
Rather, it’s a statistical property of correlated
pairs of variables like the heights of fathers
and sons. Although fathers’ and sons’ heights
are never exactly the same, their frequency
distributions are essentially unchanging.
This distributional stability generates the
Galton regression.

We see regression as a statistical proced-
ure with the power to make comparisons
more equal through the inclusion of control
variables in models for treatment effects.
Galton seems to have been uninterested in
regression as a control strategy. The use of
regression for statistical control was pion-
eered by George Udny Yule, a student of stat-
istician Karl Pearson, who was Galton’s
protégé. Yule realized that Galton’s
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regression method could be extended to in-
clude many variables. In an 1899 paper, Yule
used this extension to link the administra-
tion of the English Poor Laws in different
counties to the likelihood county residents
were poor, while controlling for population
growth and the age distribution in the

county.14 The poor laws provided subsistence
for the indigent, usually by offering shelter
and employment in institutions called work-
houses. Yule was particularly interested in
whether the practice of outdoor relief, which
provided income support for poor people
without requiring them to move to a work-
house, increased poverty rates by making
pauperism less onerous. This is a well-
defined causal question much like those that
occupy social scientists today.
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Appendix: Regression Theory

Conditional Expectation Functions

Chapter 1 introduces the notion of mathem-
atical expectation, called “expectation” for
short. We write E[Yi] for the expectation of a
variable, Yi. We’re also concerned with con-
ditional expectations, that is, the expectation
of a variable in groups (also called “cells”)
defined by a second variable. Sometimes this
second variable is a dummy, taking on only
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two values, but it need not be. Often, as in
this chapter, we’re interested in conditional
expectations in groups defined by the values
of variables that aren’t dummies, for ex-
ample, the expected earnings for people who
have completed 16 years of schooling. This
sort of conditional expectation can be writ-
ten as

and it’s read as “The conditional expectation
of Yi given that Xi equals the particular value
x.”

Conditional expectations tell us how the
population average of one variable changes
as we move the conditioning variable over
the values this variable might assume. For
every value of the conditioning variable, we
might get a different average of the depend-
ent variable, Yi. The collection of all such
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averages is called the conditional expecta-
tion function (CEF for short). E[Yi|Xi] is the
CEF of Yi given Xi, without specifying a value
for Xi, while E[Yi|Xi = x] is one point in the
range of this function.

A favorite CEF of ours appears in Figure
2.1. The dots in this figure show the average
log weekly wage for men with different levels
of schooling (measured by highest grade
completed), with schooling levels arrayed on
the X-axis (data here come from the 1980
U.S. Census). Though it bobs up and down,
the earnings-schooling CEF is strongly
upward-sloping, with an average slope of
about .1. In other words, each year of school-
ing is associated with wages that are about
10% higher on average.
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FIGURE 2.1
The CEF and the regression line

Notes: This figure shows the conditional expectation
function (CEF) of log weekly wages given years of education,
and the line generated by regressing log weekly wages on
years of education (plotted as a broken line).

Many of the CEFs we’re interested in in-
volve more than one conditioning variable,
each of which takes on two or more values.
We write
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for a CEF with K conditioning variables.
With many conditioning variables, the CEF
is harder to plot, but the idea is the same.
E[Yi|X1i = x1, …, XKi = xK] gives the popula-
tion average of Yi with these K other vari-
ables held fixed. Instead of looking at aver-
age wages conditional only on schooling, for
example, we might also condition on cells
defined by age, race, and sex.

Regression and the CEF

Table 2.1 illustrates the matchmaking idea by
comparing students who attended public and
private colleges, after sorting students into
cells on the basis of the colleges to which
they applied and were admitted. The body of
the chapter explains how we see regression
as a quick and easy way of automating such
matched comparisons. Here, we use the CEF
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to make this interpretation of regression

more rigorous.15

The regression estimates of equation (2.2)
reported in Table 2.3 suggest that private
school attendance is unrelated to average
earnings once individual SAT scores, parent-
al income, and the selectivity of colleges ap-
plied and admitted to are held fixed. As a
simplification, suppose that the CEF of log
wages is a linear function of these condition-
ing variables. Specifically, assume that

where Greek letters, as always, are paramet-
ers. When the CEF of ln Yi is a linear func-
tion of the conditioning variables as in equa-
tion (2.6), the regression of ln Yi on these
same conditioning variables recovers this
linear function. (We skip a detailed proof of
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this fact, though it’s not hard to show.) In
particular, given linearity, the coefficient on
Pi in equation (2.2) will be equal to the coef-
ficient on Pi in equation (2.6).

With a linear CEF, regression estimates of
private school effects based on equation (2.2)
are also identical to those we’d get from a
strategy that (i) matches students by values
of GROUPi, SATi, and ln PIi; (ii) compares
the average earnings of matched students
who went to private (Pi = 1) and public (Pi =
0) schools for each possible combination of
the conditioning variables; and (iii) produces
a single average by averaging all of these cell-
specific contrasts. To see this, it’s enough to
use equation (2.6) to write cell-specific com-
parisons as
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Because our linear model for the CEF as-
sumes that the effect of private school at-
tendance is equal to the constant β in every
cell, any weighted average of cell-specific
private-attendance contrasts is also equal to
β.

Linear models help us understand regres-
sion, but regression is a wonderfully flexible
tool, useful regardless of whether the under-
lying CEF is linear. Regression inherits this
flexibility from the following pair of closely
related theoretical properties:

▪ If E for some
constants a and b1, …, bK, then the
regression of Yi on X1i, …, XKi has
intercept a and slopes b1, …, bK. In
other words, if the CEF of Yi on X1i,
…, XKi is linear, then the regression
of Yi on X1i, …, XKi is it.
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▪ If E[Yi|X1i, …, XKi] is a nonlinear
function of the conditioning vari-
ables, then the regression of Yi on
X1i, …, XKi gives the best linear ap-
proximation to this nonlinear CEF
in the sense of minimizing the ex-
pected squared deviation between
the fitted values from a linear model
and the CEF.

To summarize: if the CEF is linear, regres-
sion finds it; if not linear, regression finds a
good approximation to it. We’ve just used
the first theoretical property to interpret re-
gression estimates of private school effects
when the CEF is linear. The second property
tells us that we can expect regression estim-
ates of a treatment effect to be close to those
we’d get by matching on covariates and then
averaging within-cell treatment-control dif-
ferences, even if the CEF isn’t linear.
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Figure 2.1 documents the manner in which
regression approximates the nonlinear CEF
of log wages conditional on schooling. Al-
though the CEF bounces around the regres-
sion line, this line captures the strong posit-
ive relationship between schooling and
wages. Moreover, the regression slope is
close to E{E[Yi|Xi]− E[Yi|Xi − 1]}; that is, the
regression slope also comes close to the ex-
pected effect of a one-unit change in Xi on

E[Yi|Xi].16

Bivariate Regression and Covariance

Regression is closely related to the statistical
concept of covariance. The covariance
between two variables, Xi and Yi, is defined
as
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Covariance has three important properties:

(i) The covariance of a variable with it-
self is its variance; .

(ii) If the expectation of either Xi or Yi is
0, the covariance between them is
the expectation of their product;
C(Xi, Yi) = E[XiYi].

(iii) The covariance between linear func-
tions of variables Xi and Yi—written
Wi = a + bXi and Zi = c + dYi for
constants a, b, c, d—is given by

The intimate connection between regres-
sion and covariance can be seen in a bivari-
ate regression model, that is, a regression

with one regressor, Xi, plus an intercept.17

The bivariate regression slope and intercept
are the values of a and b that minimize the
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associated residual sum of squares, which
we write as

The term RSS references a sum of squares
because, carrying out this minimization in a
particular sample, we replace expectation
with a sample average or sum. The solution
for the bivariate case is

An implication of equation (2.7) is that when
two variables are uncorrelated (have a cov-
ariance of 0), the regression of either one on
the other generates a slope coefficient of 0.
Likewise, a bivariate regression slope of 0
implies the two variables involved are
uncorrelated.
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Fits and Residuals

Regression breaks any dependent variable
into two pieces. Specifically, for dependent
variable Yi, we can write

The first term consists of the fitted values, Ŷi,
sometimes said to be the part of Yi that’s “ex-
plained” by the model. The second part, the
residuals, ei, is what’s left over.

Regression residuals and the regressors in-
cluded in the model that produced them are
uncorrelated. In other words, if ei is the re-
sidual from a regression on X1i, …, XKi, then
the regression of ei on these same variables
produces coefficients that are all 0. Because
fitted values are a linear combination of re-
gressors, they’re also uncorrelated with re-
siduals. We summarize these important
properties here.
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PROPERTIES OF RESIDUALS Suppose that α and
β1, …, βK are the intercept and slope coef-
ficients from a regression of Yi on X1i, …,
XKi. The fitted values from this regres-
sion are

and the associated regression residuals are

Regression residuals

(i) have expectation and sample mean
0: E[ei] =

(ii) are uncorrelated in both population
and sample with all regressors that
made them and with the corres-
ponding fitted values. That is, for
each regressor, Xki,
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You can take these properties on faith, but
for those who know a little calculus, they’re
easy to establish. Start with the fact that re-
gression parameters and estimates minimize
the residual sum of squares. The first-order
conditions for this minimization problem
amount to statements equivalent to (i) and
(ii).

Regression for Dummies

An important regression special case is
bivariate regression with a dummy regressor.
The conditional expectation of Yi given a
dummy variable, Zi, takes on two values.
Write them in Greek, like this:
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so that

is the difference in expected Yi with the
dummy regressor, Zi, switched on and off.

Using this notation, we can write

This shows that E[Yi|Zi] is a linear function
of Zi, with slope β and intercept α. Because
the CEF with a single dummy variable is lin-
ear, regression fits this CEF perfectly. As a
result, the regression slope must also be β =
E[Yi|Zi = 1] − E[Yi|Zi = 0], the difference in
expected Yi with Zi switched on and off.

Regression for dummies is important be-
cause dummy regressors crop up often, as in
our analyses of health insurance and types of
college attended.
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Regression Anatomy and the OVB
Formula

The most interesting regressions are mul-
tiple; that is, they include a causal variable of
interest, plus one or more control variables.
Equation (2.2), for example, regresses log
earnings on a dummy for private college at-
tendance in a model that controls for ability,
family background, and the selectivity of
schools that students have applied to and
been admitted to. We’ve argued that control
for covariates in a regression model is much
like matching. That is, the regression coeffii-
cent on a private school dummy in a model
with controls is similar to what we’d get if we
divided students into cells based on these
controls, compared public school and private
school students within these cells, and then
took an average of the resulting set of
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conditional comparisons. Here, we offer a
more detailed “regression anatomy” lesson.

Suppose the causal variable of interest is
X1i (say, a dummy for private school) and the
control variable is X2i (say, SAT scores).
With a little work, the coefficient on X1i in a
regression controlling for X2i can be written
as

where is the residual from a regression of
X1i on X2i:

As always, residuals are uncorrelated with
the regressors that made them, and so it is
for the residual . It’s not surprising, there-
fore, that the coefficient on X1i in a mul-
tivariate regression that controls for X2i is
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the bivariate coefficient from a model that
includes only the part of X1i that is uncorrel-
ated with X2i. This important regression ana-
tomy formula shapes our understanding of
regression coefficients from around the
world.

The regression anatomy idea extends to
models with more than two regressors. The
multivariate coefficient on a given regressor
can be written as the coefficient from a
bivariate regression on the residual from re-
gressing this regressor on all others. Here’s
the anatomy of the kth coefficient in a model
with K regressors:

REGRESSION ANATOMY
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where is the residual from a regression
of Xki on the K − 1 other covariates in-
cluded in the model.

Regression anatomy is especially revealing
when the controls consist of dummy vari-
ables, as in equation (2.2). For the purposes
of this discussion, we simplify the model of
interest to have only dummy controls, that
is,

Regression anatomy tells us that the coeffi-
cient on Pi controlling for the set of 150
GROUPji dummies is the bivariate coefficient
from a regression on , where this is the re-
sidual from a regression of Pi on a constant
and the set of 150 GROUPji dummies.

It’s helpful here to add a second subscript
to index groups as well as individuals. In this
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scheme, ln Yij is the log earnings of college
graduate i in selectivity group j, while Pij is
this graduate’s private school enrollment
status. What is the residual, , from the aux-
iliary regression of Pij on the set of 150
selectivity-group dummies? Because the aux-
iliary regression that generates has a para-
meter for every possible value of the underly-
ing CEF, this regression captures the CEF of
Pij conditional on selectivity group perfectly.
(Here we’re extending the dummy-variable
result described by equation (2.8) to regres-
sion on dummies describing a categorical
variable that takes on many values instead of
just two.) Consequently, the fitted value from
a regression of Pij on the full set of
selectivity-group dummies is the mean
private school attendance rate in each group.
For applicant i in group j, the auxiliary re-
gression residual is therefore , where

is shorthand for the mean private school
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enrollment rate in the selectivity group to
which i belongs.

Finally, putting the pieces together, regres-
sion anatomy tells us that the multivariate β
in the model described by equation (2.9) is

This expression reveals that, just as if we
were to manually sort students into groups
and compare public and private students
within each group, regression on private
school attendance with control for
selectivity-group dummies is also a within-
group procedure: variation across groups is
removed by subtracting to construct the re-
sidual, . Moreover, as for groups C and D in
Table 2.1, equation (2.10) implies that ap-
plicant groups in which everyone attends
either a public or private institution are un-
informative about the effects of private
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school attendance because is 0 for
everyone in such groups.

The OVB formula, used at the end of this
chapter (in Section 2.3) to interpret estim-
ates from models with different sets of con-
trols, provides another revealing take on re-
gression anatomy. Call the coefficient on X1i

in a multivariate regression model con-
trolling for X2i the long regression coeffi-

cient, βl:

Call the coefficient on X1i in a bivariate re-
gression (that is, without X2i) the short re-

gression coefficient, βs:
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The OVB formula describes the relationship
between short and long coefficients as
follows.

OMITTED VARIABLES BIAS (OVB) FORMULA

where γ is the coefficient on X2i in the long
regression, and π21 is the coefficient on X1i

in a regression of X2i on X1i. In words:
short equals long plus the effect of omitted
times the regression of omitted on
included.

This central formula is worth deriving. The
slope coefficient in the short model is

Substituting the long model for Yi in equa-
tion (2.11) gives
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The first equals sign comes from the fact that
the covariance of a linear combination of
variables is the corresponding linear com-
bination of covariances after distributing
terms. Also, the covariance of a constant
with anything else is 0, and the covariance of
a variable with itself is the variance of that
variable. The second equals sign comes from
the fact that , because residuals are
uncorrelated with the regressors that made
them ( is the residual from a regression that
includes X1i). The third equals sign defines
π21 to be the coefficient on X1i in a regression

of X2i on X1i.18
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Often, as in the discussion of equations
(2.2) and (2.5), we’re interested in short vs.
long comparisons across regression models
that include a set of controls common to
both models. The OVB formula for this scen-
ario is a straightforward extension of the one
above. Call the coefficient on X1i in a mul-
tivariate regression controlling for X2i and

X3i the long regression coefficient, βl; call the
coefficient on X1i in a multivariate regression
controlling only for X3i (that is, without X2i)

the short regression coefficient, βs. The OVB
formula in this case can still be written

where γ is the coefficient on X2i in the long
regression, but that regression now includes
X3i as well as X2i, and π21 is the coefficient on
X1i in a regression of X2i on both X1i and X3i.
Once again, we can say: short equals long
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plus the effect of omitted times the regres-
sion of omitted on included. We leave it to
the reader to derive equation (2.12); this de-
rivation tests your understanding (and
makes an awesome exam question).

Building Models with Logs

The regressions discussed in this chapter
look like

a repeat of equation (2.2). What’s up with ln
Yi on the left-hand side? Why use logs and
not the variable Yi itself? The answer is easi-
est to see in a bivariate regression, say,
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where Pi is a dummy for private school at-
tendance. Because this is a case of regression
for dummies, we have

In other words, regression in this case fits
the CEF perfectly.

Suppose we engineer a ceteris paribus
change in Pi for student i. This reveals poten-
tial outcome Y0i when Pi = 0 and Y1i when Pi

= 1. Thinking now of equation (2.13) as a
model for the log of these potential out-
comes, we have

The difference in potential outcomes is
therefore
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Rearranging further gives

where Δ%Yp is shorthand for the percentage
change in potential outcomes induced by Pi.
Calculus tells us that ln{1+ Δ%Yp} is close to
Δ%Yp, when the latter is small. From this, we
conclude that the regression slope in a model
with ln Yi on the left-hand side gives the ap-
proximate percentage change in Yi generated
by changing the corresponding regressor.

To calculate the exact percentage change
generated by changing Pi, exponentiate both
sides of equation (2.14)

so
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When β is less than about .2, exp(β) − 1 and
β are close enough to justify reference to the

latter as percentage change.19

You might hear masters describe regres-
sion coefficients from a log-linear model as
measuring “log points.” This terminology re-
minds listeners that the percentage change
interpretation is approximate. In general, log
points underestimate percentage change,
that is,

with the gap between the two growing as β
increases. For example, when β = .05, exp(β)
− 1 = .051, but when β = .3, exp(β) − 1 = .35.
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Regression Standard Errors and Con-
fidence Intervals

Our regression discussion has largely ig-
nored the fact that our data come from
samples. As we noted in the appendix to the
first chapter, sample regression estimates,
like sample means, are subject to sampling
variance. Although we imagine the underly-
ing relationship quantified by a regression to
be fixed and nonrandom, we expect estim-
ates of this relationship to change when com-
puted in a new sample drawn from the same
population. Suppose we’re after the relation-
ship between the earnings of college gradu-
ates and the types of colleges they’ve atten-
ded. We’re unlikely to have data on the en-
tire population of graduates. In practice,
therefore, we work with samples drawn from
the population of interest. (Even if we had a
complete enumeration of the student
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population in one year, different students
will have gone to school in other years.) The
data set analyzed to produce the estimates in
Tables 2.2–2.5 is one such sample. We would
like to quantify the sampling variance associ-
ated with these estimates.

Just as with a sample mean, the sampling
variance of a regression coefficient is meas-
ured by its standard error. In the appendix to
Chapter 1, we explained that the standard er-
ror of a sample average is

The standard error of the slope estimate in a
bivariate regression ( ) looks similar and can
be written as
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where σe is the standard deviation of the re-
gression residuals, and σX is the standard de-
viation of the regressor, Xi.

Like the standard error of a sample aver-
age, regression standard errors decrease with
sample size. Standard errors increase (that
is, regression estimates are less precise)
when the residual variance is large. This isn’t
surprising, since a large residual variance
means the regression line doesn’t fit very
well. On the other hand, variability in re-
gressors is good: as σX increases, the slope
estimate becomes more precise. This is illus-
trated in Figure 2.2, which shows how
adding variability in Xi (specifically, adding
the observations plotted in gray) helps pin
down the slope linking Yi and Xi.
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FIGURE 2.2
Variance in X is good

The regression anatomy formula for mul-
tiple regression carries over to standard er-
rors. In a multivariate model like this,

the standard error for the kth sample slope,
, is
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where is the standard deviation of , the
residual from a regression of Xki on all other
regressors. The addition of controls has two
opposing effects on SE( ). The residual vari-
ance (σe in the numerator of the standard er-
ror formula) falls when covariates that pre-
dict Yi are added to the regression. On the
other hand, the standard deviation of in
the denominator of the standard error for-
mula is less than the standard deviation of
Xki, increasing the standard error. Additional
covariates explain some of the variation in
other regressors, and this variation is re-
moved by virtue of regression anatomy. The
upshot of these changes to top and bottom
can be either an increase or decrease in
precision.

Standard errors computed using equation
(2.15) are nowadays considered old-fash-
ioned and are not often seen in public. The
old-fashioned formula is derived assuming
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the variance of residuals is unrelated to re-
gressors—a scenario that masters call homo-
skedasticity. Homoskedastic residuals can
make regression estimates a statistically effi-
cient matchmaker. However, because the ho-
moskedasticity assumption may not be satis-
fied, kids today rock a more complicated cal-
culation known as robust standard errors.

The robust standard error formula can be
written as

Robust standard errors allow for the possib-
ility that the regression line fits more or less
well for different values of Xi, a scenario
known as heteroskedasticity. If the residuals
turn out to be homoskedastic after all, the
robust numerator simplifies:
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In this case, estimates of RSE( ) should be
close to estimates of SE( ), since the theoret-
ical standard errors are then identical. But if
residuals are indeed heteroskedastic, estim-
ates of RSE( ) usually provide a more accur-
ate (and typically somewhat larger) measure

of sampling variance.20

1 SAT scores here are from the pre-2005 SAT. Pre-2005
total scores add math and verbal scores, each of which
range from 0 to 800, so the combined maximum is 1,600.

2 Stacy Berg Dale and Alan B. Krueger, “Estimating the
Payoff to Attending a More Selective College: An Applica-
tion of Selection on Observables and Unobservables,”
Quarterly Journal of Economics, vol. 117, no. 4, November
2002, pages 1491–1527.

3 Which isn’t to say they are never fooled. Adam Wheeler
faked his way into Harvard with doctored transcripts and
board scores in 2007. His fakery notwithstanding, Adam
managed to earn mostly As and Bs at Harvard before his
scheme was uncovered (John R. Ellement and Tracy Jan,
“Ex-Harvard Student Accused of Living a Lie,” The Boston
Globe, May 18, 2010).

254/694

text/part0009.html#ch-fn20
text/part0009.html#ch_fn1
text/part0009.html#ch_fn2
text/part0009.html#ch_fn3


4 When data fall into one of J groups, we need J − 1 dum-
mies for a full description of the groups. The category for
which no dummy is coded is called the reference group.

5 “Ordinary-ness” here refers to the fact that OLS weights
each observation in this sum of squares equally. We discuss
weighted least squares estimation in Chapter 5.

6 Our book, Mostly Harmless Econometrics (Princeton
University Press, 2009), discusses regression-weighting
schemes in more detail.

7 Barron’s classifies colleges as Most Competitive, Highly
Competitive, Very Competitive, Competitive, Less Compet-
itive, and Noncompetitive, according to the class rank of en-
rolled students and the proportion of applicants admitted.

8 Other controls in the empirical model include dummies
for female students, student race, athletes, and a dummy for
those who graduated in the top 10% of their high school
class. These variables are not written out in equation (2.2).

9 Dale and Krueger, “Estimating the Payoff to Attending a
More Selective College,” Quarterly Journal of Economics,
2002.

10 The group dummies in (2.4), θj, are read “theta-j.”
11 This coefficient is read “lambda.”
12 Joseph Altonji, Todd Elder, and Christopher Taber

formalize the notion that the OVB associated with the re-
gressors you have at hand provides a guide to the OVB gen-
erated by those you don’t. For details, see their study “Selec-
tion on Observed and Unobserved Variables: Assessing the
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Effectiveness of Catholic Schools,” Journal of Political
Economy, vol. 113, no. 1, February 2005, pages 151–184.

13 Francis Galton, “Regression towards Mediocrity in
Hereditary Stature,” Journal of the Anthropological Insti-
tute of Great Britain and Ireland, vol. 15, 1886, pages
246–263.

14 George Udny Yule, “An Investigation into the Causes of
Changes in Pauperism in England, Chiefly during the Last
Two Intercensal Decades,” Journal of the Royal Statistical
Society, vol. 62, no. 2, June 1899, pages 249–295.

15 For a more detailed explanation, see Chapter 3 of An-
grist and Pischke, Mostly Harmless Econometrics, 2009.

16 The thing inside braces here, E[Yi|Xi] − E[Yi|Xi − 1], is
a function of Xi, and so, like the variable Xi, it has an
expectation.

17 The term “bivariate” comes from the fact that two vari-
ables are involved, one dependent, on the left-hand side,
and one regressor, on the right. Multivariate regression
models add regressors to this basic setup.

18 The regression anatomy formula is derived similarly,
hence we show the steps only for OVB.

19 The percentage change interpretation of regression
models built with logs does not require a link with potential
outcomes, but it’s easier to explain in the context of models
with such a link.

20 The distinction between robust and old-fashioned
standard errors for regression estimates parallels the dis-
tinction (noted in the appendix to Chapter 1) between
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standard error estimators for the difference in two means
that use separate or common estimates of for the variance
of data from treatment and control groups.
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Chapter 3

Instrumental
Variables

KWAI CHANG CAINE: From a single action,
you draw an entire universe.

Kung Fu, Season 1, Episode 1

Our Path



Statistical control through regression may

fail to produce convincing estimates of caus-
al effects. Luckily, other paths lead to other
things equal. Just as in randomized trials,
the forces of nature, including human
nature, sometimes manipulate treatment in
a manner that obviates the need for controls.
Such forces are rarely the only source of vari-
ation in treatment, but this is an obstacle
easily surmounted. The instrumental vari-
ables (IV) method harnesses partial or in-
complete random assignment, whether nat-
urally occuring or generated by researchers.
We illustrate this important idea three ways.
The first evaluates an American education
innovation—charter schools—with an ele-
mentary IV analysis that exploits random-
ized school admissions lotteries. A second IV
application, examining the question of how
best to respond to domestic violence, shows
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how IV can be used to analyze field experi-
ments in which the subjects randomly as-
signed to treatment are free to opt out. The
third application explores the long-run ef-
fects of growing up in a larger or smaller
family. This application illustrates two-stage
least squares (2SLS), an elaboration on the
IV method and one of our most powerful
tools.

3.1 The Charter Conundrum

INTERVIEWER: Have your mom and dad
told you about the lottery?

DAISY: The lottery … isn’t that when
people play and they win money?

Waiting for Superman, 2010

The release of Waiting for Superman, a doc-
umentary film that tells the story of

260/694



applicants to charter schools in New York
and California, intensified an already fever-
ish debate over American education policy.
Superman argues that charter schools offer
the best hope for poor minority students who
would otherwise remain at inner city public
schools, where few excel and many drop out.

Charter schools are public schools that op-
erate with considerably more autonomy than
traditional American public schools. A
charter—the right to operate a public
school—is typically awarded to an independ-
ent operator (mostly private, nonprofit man-
agement organizations) for a limited period,
subject to renewal conditional on good per-
formance. Charter schools are free to struc-
ture their curricula and school environ-
ments. Many charter schools expand instruc-
tion time by running long school days and
continuing school on weekends and during
the summer. Perhaps the most important
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and surely the most controversial difference
between charters and traditional public
schools is that the teachers and staff who
work at the former rarely belong to labor
unions. By contrast, most big-city public
school teachers work under teachers’ union
contracts that regulate pay and working con-
ditions, often in a very detailed manner.
These contracts may improve working condi-
tions for teachers, but they can make it hard
to reward good teachers or dismiss bad ones.

Among the schools featured in Waiting for
Superman is KIPP LA College Prep, one of
more than 140 schools affiliated with the
Knowledge Is Power Program. KIPP schools
are emblematic of the No Excuses approach
to public education, a widely replicated
charter model that emphasizes discipline
and comportment and features a long school
day, an extended school year, selective teach-
er hiring, and a focus on traditional reading
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and math skills. KIPP was started in Hous-
ton and New York City in 1995 by veterans of
Teach for America, a program that recruits
thousands of recent graduates of America’s
most selective colleges and universities to
teach in low-performing school districts.
Today, the KIPP network serves a student
body that is 95% black and Hispanic, with
more than 80% of KIPP students poor
enough to qualify for the federal govern-

ment’s subsidized lunch program.1

The American debate over education re-
form often focuses on the achievement gap,
shorthand for uncomfortably large test score
differences by race and ethnicity. Black and
Hispanic children generally score well below
white and Asian children on standardized
tests. The question of how policymakers
should react to large and persistent racial
achievement gaps generates two sorts of
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responses. The first looks to schools to pro-
duce better outcomes; the second calls for
broader social change, arguing that schools
alone are unlikely to close achievement gaps.
Because of its focus on minority students,
KIPP is often central in this debate, with
supporters pointing out that nonwhite KIPP
students have markedly higher average test
scores than nonwhite students from nearby
schools. KIPP skeptics have argued that
KIPP’s apparent success reflects the fact that
KIPP attracts families whose children are
more likely to succeed anyway:

KIPP students, as a group, enter KIPP
with substantially higher achievement
than the typical achievement of schools
from which they came…. [T]eachers told
us either that they referred students who
were more able than their peers, or that
the most motivated and educationally
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sophisticated parents were those likely
to take the initiative … and enroll in
KIPP.2

This claim raises the important question of
whether ceteris is paribus when KIPP stu-
dents are compared to other public school
children.

Playing the Lottery

The first KIPP school in New England was a
middle school in the town of Lynn, Mas-
sachusetts, just north of Boston. An old ditty
warns: “Lynn, Lynn, city of sin, you never
come out the way you came in.” Alas, there’s
not much coming out of Lynn today, sinful or
otherwise. Once a shoe manufacturing hub,
Lynn has more recently been distinguished
by high rates of unemployment, crime, and
poverty. In 2009, more than three-quarters
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of Lynn’s mostly nonwhite public school stu-
dents were poor enough to qualify for a sub-
sidized lunch. Poverty rates are even higher
among KIPP Lynn’s entering cohorts of fifth
graders. Although urban charter schools typ-
ically enroll many poor, black students, KIPP
Lynn is unusual among charters in enrolling
a high proportion of Hispanic children with
limited English proficiency.

KIPP Lynn got off to a slow start when it
opened in fall 2004, with fewer applicants
than seats. A year later the school was over-
subscribed, but not by much. After 2005,
however, demand accelerated, with more
than 200 students applying for about 90
seats in fifth grade each year. As required by
Massachusetts law, scarce charter seats are
allocated by lottery. More than a colorful in-
stitutional detail, these lotteries allow us to
untangle the charter school causality conun-
drum. Our IV tool uses these admissions
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lotteries to frame a naturally occurring ran-
domized trial.

The decision to attend a charter school is
never entirely random: even among applic-
ants, some of those offered a seat neverthe-
less choose to go elsewhere, while a few lot-
tery losers find their way in by other means.
However, comparisons of applicants who are
and are not offered a seat as a result of ran-
dom admissions lotteries should be satisfy-
ingly apples to apples in nature. Assuming
the only difference created by winning the
lottery is in the likelihood of charter enroll-
ment (an assumption called an exclusion re-
striction), IV turns randomized offer effects
into causal estimates of the effect of charter
attendance. Specifically, IV estimates cap-
ture causal effects on the sort of child who
enrolls in KIPP when offered a seat in a lot-
tery but wouldn’t manage to get in otherwise.
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As we explain below, this group is known as
the set of KIPP lottery compliers.

Master Joshway and his collaborators col-
lected data on applicants to KIPP Lynn from

fall 2005 through fall 2008.3 Some applic-
ants bypass the lottery: those with previously
enrolled siblings are (for the most part)
guaranteed admission. A few applicants are
categorically excluded (those too old for
middle school, for example). Among the 446
applicants for fifth-grade entry who were
subject to random assignment in the four
KIPP lotteries held from 2005 to 2008, 303
(68%) were offered a seat. Perhaps surpris-
ingly, however, a fair number of these stu-
dents failed to enroll come September. Some
had moved away, while others ultimately
preferred a nearby neighborhood school.
Among those offered a seat, 221 (73%) ap-
peared at KIPP the following school year. At
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the same time, a handful of those not offered
a place (about 3.5%) nevertheless found their
way into KIPP (a few losing applicants were
offered charter seats at a later date or in a
later lottery). Figure 3.1 summarizes this im-
portant information.

KIPP lotteries randomize the offer of a
charter seat. Random assignment of offers
should balance the demographic character-
istics of applicants who were and were not
offered seats. Balance by offer status indeed
looks good, as can be seen in panel A of
Table 3.1. As a benchmark, the first column
reports demographic characteristics and ele-
mentary school test scores for all Lynn public
school fifth graders. The second and third
columns, which report averages for KIPP lot-
tery winners and the difference in means
between winners and losers, show that win-
ners and losers are about equally likely to be
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black or Hispanic or poor enough to qualify
for a free lunch.

FIGURE 3.1
Application and enrollment data from KIPP

Lynn lotteries

Note: Numbers of Knowledge Is Power Program (KIPP)
applicants are shown in parentheses.

An especially important feature of Table
3.1 is the check for balance in pretreatment
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outcomes, namely, the test scores of lottery
applicants in fourth grade, prior to KIPP en-
rollment (these are labeled “baseline scores”
in the table). As is common in research on
student achievement, these scores have been
standardized by subtracting the mean and
dividing by the standard deviation of scores
in a reference population, in this case, the
population of Massachusetts fourth graders.
After standardization, scores are measured
in units defined by the standard deviation of
the reference population. As in many poorer
cities and towns in Massachusetts, average
math scores in Lynn fall about three-tenths
of a standard deviation below the state
mean. This level of scores is written −.3σ (as
in the appendix to Chapters 1 and 2, stand-
ard deviation is represented by the Greek let-
ter “sigma”). The small and statistically in-
significant baseline differences between
KIPP lottery winners and losers reported in
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column (3) of Table 3.1 are most likely due to
chance.
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TABLE 3.1
Analysis of KIPP lotteries

Notes: This table describes baseline characteristics of
Lynn fifth graders and reports estimated offer effects for
Knowledge Is Power Program (KIPP) Lynn applicants.
Means appear in columns (1), (2), and (4). Column (3)
shows differences between lottery winners and losers. These

273/694



are coefficients from regressions that control for risk sets,
namely, dummies for year and grade of application and the
presence of a sibling applicant. Column (5) shows differ-
ences between KIPP students and applicants who did not at-
tend KIPP. Standard errors are reported in parentheses.

The final two columns in Table 3.1 show
averages for fifth graders who enrolled at
KIPP Lynn, along with differences between
KIPP applicants who did and did not enroll
at KIPP. Since enrollment is not randomly
assigned, differences between enrolled and
nonenrolled students potentially reflect se-
lection bias: Lottery winners who chose to go
elsewhere may care less about school than
those who accepted a KIPP enrollment op-
portunity. This is the selection bias scenario
described by KIPP skeptics. As it turns out,
however, the gaps in column (5) are small,
and none approach statistical significance,
suggesting that selection bias may not be im-
portant in this context after all.
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Most KIPP applicants apply to enter KIPP
in fifth grade, one year before regular middle
school starts, but some apply to enter in
sixth. We look here at effects of KIPP attend-
ance on test scores for tests taken at the end
of the grade following the application grade.
These scores are from the end of fifth grade
for those who applied to KIPP when they
were in fourth grade and the end of sixth
grade for those who applied to KIPP while in
fifth. The resulting sample, which includes
371 applicants, omits young applicants who
applied for entry after finishing third grade
and a few applicants with missing baseline or

outcome scores.4

Panel B of Table 3.1 shows that KIPP ap-
plicants who were offered a seat had stand-
ardized math scores close to 0, that is, near
the state mean. Because KIPP applicants
start with fourth-grade scores that average
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roughly .3σ below the state mean, achieve-
ment at the level of the state mean should be
seen as impressive. By contrast, the average
outcome score among those not offered a
seat is about −.36σ, a little below the fourth-
grade starting point.

Since lottery offers are randomly assigned,
the difference between 0 and −.36, reported
in column (3), is an average causal effect: the
offer of a seat at KIPP Lynn boosts math
scores by .36σ, a large gain (the effect of
KIPP offers on reading scores, though also
positive, is smaller and not statistically signi-
ficant). As a technical note, the analysis here
is slightly more complicated than a simple
comparison of means, though the idea is the
same. The results in column (3) come from
regressions of scores on a dummy variable
indicating KIPP offers, along with dummies
for year and grade of application and the
presence of a sibling applicant. These control
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variables are necessary because the probabil-
ity of winning the lottery varies from year to
year and from grade to grade, and is much
higher for siblings. The control variables
used here describe groups of students (some-
times called risk sets) for whom the odds of a

lottery offer are constant.5

What does an offer effect of .36σ tell us
about the effects of KIPP Lynn attendance?
The IV estimator converts KIPP offer effects
into KIPP attendance effects. In this case, the
instrumental variable (or “instrument” for
short) is a dummy variable indicating KIPP
applicants who receive offers. In general, an
instrument meets three requirements:

(i) The instrument has a causal effect
on the variable whose effects we’re
trying to capture, in this case KIPP
enrollment. For reasons that will

277/694

text/part0010.html#ch-fn5


soon become clear, this causal effect
is called the first stage.

(ii) The instrument is randomly as-
signed or “as good as randomly as-
signed,” in the sense of being unre-
lated to the omitted variables we
might like to control for (in this
case variables like family back-
ground or motivation). This is
known as the independence
assumption.

(iii) Finally, IV logic requires an exclu-
sion restriction. The exclusion re-
striction describes a single channel
through which the instrument af-
fects outcomes. Here, the exclusion
restriction amounts to the claim
that the .36σ score differential
between winners and losers is at-
tributable solely to the .74 win-loss
difference in attendance rates
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shown in column (3) of Table 3.1 (at
the top of panel B).

The IV method uses these three assump-
tions to characterize a chain reaction leading
from the instrument to student achievement.
The first link in this causal chain—the first
stage—connects randomly assigned offers
with KIPP attendance, while the second
link—the one we’re after—connects KIPP at-
tendance with achievement. By virtue of the
independence assumption and the exclusion
restriction, the product of these two links
generates the effect of offers on test scores:

Rearranging, the causal effect of KIPP at-
tendance is
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This works out to be .48σ, as shown at the
left in Figure 3.2.

The logic generating equation (3.1) is eas-
ily summarized: KIPP offers are assumed to
affect test scores via KIPP attendance alone.
Offers increase attendance rates by about 75
percentage points (.74 to be precise), so mul-
tiplying effects of offers on scores by about
4/3 (≈ 1/.74) generates the attendance effect.
This adjustment corrects for the facts that
roughly a quarter of those who were offered
a seat at KIPP chose to go elsewhere, while a
few of those not offered nevertheless wound
up at KIPP.

An alternative estimate of the KIPP at-
tendance effect appears in columns (4) and
(5) in Table 3.1. Column (4) reports means
for KIPP students, while column (5) shows
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the contrast between KIPP students and
everyone else in the applicant pool. The dif-
ferences in column (5) ignore randomized
lottery offers and come from a regression of
post-enrollment math scores on a dummy
variable for KIPP attendance, along with the
same controls used to construct the win/loss
differences in column (3). The variation in
KIPP attendance in this regression comes
mostly, but not entirely, from the lottery. Be-
cause KIPP enrollment involves random as-
signment as well as individual choices
(made, for example, when winners opt out),
comparisons between those who do and
don’t enroll may be compromised by selec-
tion bias. However, the estimate for math in
column (5) (about .47σ) is close to the IV es-
timate in Figure 3.2, confirming our earlier
conjecture that selection bias is unimportant
in this case.
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FIGURE 3.2
IV in school: the effect of KIPP attendance

on math scores

Note: The effect of Knowledge Is Power Program (KIPP)
enrollment described by this figure is .48σ = .355σ/.741.

A gain of half a standard deviation in math
scores after one school year is a remarkable
effect. Lynn residents lucky enough to have
attended KIPP really don’t come out the way
they came in.
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LATE for Charter School

The KIPP lottery exemplifies an IV chain re-
action. The components of such reactions
have been named, so masters can discuss
them efficiently. We’ve noted that the origin-
al randomizer (in this case, a KIPP offer) is
called an instrumental variable or just an in-
strument for short. As we’ve seen, the link
from the instrument to the causal variable of
interest (in this case, the effect of lottery of-
fers on KIPP attendance) is called the first-
stage, because this is the first link in the
chain. The direct effect of the instrument on
outcomes, which runs the full length of the
chain (in this case, the effect of offers on
scores), is called the reduced form. Finally,
the causal effect of interest—the second link
in the chain—is determined by the ratio of
reduced form to first-stage estimates. This
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causal effect is called a local average treat-
ment effect (LATE for short).

The links in the IV chain are made of dif-
ferences between conditional expectations,
that is, comparisons of population averages
for different groups. In practice, population
averages are estimated using sample means,
usually with data from random samples. The
necessary data are

▪ the instrument, Zi: in this case, a
dummy variable that equals 1 for
applicants randomly offered a seat
at KIPP (defined only for those par-
ticipating in the lottery);

▪ the treatment variable, Di: in this
case, a dummy variable that equals 1
for those who attended KIPP (for
historical reasons, this is sometimes
called the endogenous variable);
and
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▪ the outcome variable, Yi: in this case,
fifth-grade math scores.

Key relationships between these variables,
that is, the links in the IV chain, are para-
meters. We therefore christen them, you
guessed it, in Greek.

THE FIRST STAGE E[Di|Zi = 1] − E[Di|Zi = 0];
call this ?.

In the KIPP study, ? (“phi”) is the differ-
ence in KIPP attendance rates between
those who were and were not offered a
seat in the lottery (equal to .74 in Figure
3.2).

THE REDUCED FORM E[Yi|Zi = 1] − E[Yi|Zi = 0];
call this ρ.

In the KIPP study, ρ (“rho”) is the differ-
ence in average test scores between
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applicants who were and were not offered
a seat in the lottery (equal to .36 in Figure
3.2).

THE LOCAL AVERAGE TREATMENT EFFECT (LATE)

LATE, denoted here by λ (“lambda”), is the
ratio of the reduced form to the first stage.

In the KIPP study, LATE is the difference
in scores between winners and losers di-
vided by the difference in KIPP attend-
ance rates between winners and losers
(equal to .48 in Figure 3.2).

We can estimate λ by replacing the four
population expectations on the right-hand
side of equation (3.2) with the corresponding
sample averages, an estimator masters call
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IV. In practice, however, we usually opt for a
method known as two-stage least squares
(2SLS), detailed in Section 3.3 below. 2SLS
implements the same idea, with added flex-
ibility. Either way, the fact that parameters
are estimated using samples requires us to
quantify their sampling variance with the ap-
propriate standard errors. It won’t surprise
you to learn that there’s a formula for IV
standard errors and that your econometric
software knows it. Problem solved!

A more interesting question concerns the
interpretation of λ: just who is LATE for
charter school, you might ask. Children
probably differ in the extent to which they
benefit from KIPP. For some, perhaps those
with a supportive family environment, the
choice of KIPP Lynn or a Lynn public school
matters little; the causal effect of KIPP at-
tendance on such applicants is 0. For others,
KIPP attendance may matter greatly. LATE
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is an average of these different individual
causal effects. Specifically, LATE is the aver-
age causal effect for children whose KIPP en-
rollment status is determined solely by the
KIPP lottery.

The biblical story of Passover explains that
there are four types of children, and so it is
with children today. We’ll start with the first
three types: Applicants like Alvaro are dying
to go to KIPP; if they lose the lottery, their
mothers get them into KIPP anyway. Applic-
ants like Camila are happy to go to KIPP if
they win, but stoically accept the verdict if
they lose. Finally, applicants like Normando
worry about long days and lots of homework.
Normando doesn’t really want to go to KIPP
and refuses to do so when hearing that he
has won a seat. Normando is called a never-
taker, because his choice of school is unaf-
fected by the lottery (it’s the social worker
who put his name in the hat). At the other
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end of KIPP kommitment, Alvaro is called an
always-taker. He’ll happily take a seat when
offered, while his mother finds a way to
make it happen for him even when he loses,
perhaps by falsely claiming a sibling among
the winners. For Alvaro, too, choice of school
is unaffected by the lottery.

Camila attends KIPP when she wins the
lottery but will regretfully take a seat in her
neighborhood school if she loses (Camila’s
foster mother has her hands full; she wants
the best for her daughter, but plays the hand
she’s dealt). Camila is the type of applicant
who gives IV its power, because the instru-
ment changes her treatment status. When
her Zi = 0, Camila’s Di = 0; and when her Zi

= 1, Camila’s Di = 1. IV strategies depend on
applicants like Camila, who are called com-
pliers, a group we indicate with the dummy
variable, Ci. The term “compliers” comes
from the world of randomized trials. In many

289/694



randomized trials, such as those used to
evaluate new drugs, the decision to comply
with a randomized treatment assignment re-
mains voluntary and nonrandom (experi-
mental subjects who are randomly offered
treatment may decline it, for example). Com-
pliers in such trials are those who take treat-
ment when randomly offered treatment but
not otherwise. With lottery instruments,
LATE is the average causal effect of KIPP at-
tendance on Camila and other compliers who
enroll at KIPP if and only if they win the lot-
tery. IV methods are uninformative for
always-takers like Alvaro and never-takers
like Normando, because the instrument is
unrelated to their treatment status.
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TABLE 3.2
The four types of children

Note: KIPP = Knowledge Is Power Program.

Table 3.2 classifies children like Alvaro,
Normando, and Camila, as well as a fourth
type, called defiers. The columns indicate at-
tendance choices made when Zi = 0; rows in-
dicate choices made when Zi = 1. The table
covers all possible scenarios for every applic-
ant, not only those we observe (for example,
for applicants who won an offer, the table de-
scribes what they would have done had they
lost). Never-takers like Normando and
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always-takers like Alvaro appear on the main
diagonal. Win or lose, their choice of school
is unchanged. At the bottom left, Camila
complies with her lottery offer, attending
KIPP if and only if she wins. The first stage,
E[Di|Zi = 1] − E[Di|Zi = 0], is driven by such
applicants, and LATE reflects average treat-
ment effects in this group.

The defiers in Table 3.2 are those who en-
roll in KIPP only when not offered a seat in
the lottery. The Bible refers to such rebels as
“wicked,” but we make no moral judgments.
We note, however, that such perverse beha-
vior makes IV estimates hard to interpret.
With defiers as well as compliers in the data,
the average effect of a KIPP offer might be 0
even if everyone benefits from KIPP attend-
ance. Luckily, defiant behavior is unlikely in
charter lotteries and many other IV settings.
We therefore assume defiant behavior is rare
to nonexistent. This no-defiers assumption is
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called monotonicity, meaning that the in-
strument pushes affected applicants in one
direction only.

We’ve argued that instrumental variables
can be understood as initiating a causal
chain in which an instrument, Zi, changes
the variable of interest, Di, in turn affecting
outcomes, Yi. The notion of a complier popu-
lation tied to each instrument plays a key
role in our interpretation of this chain reac-
tion. The LATE theorem says that for any
randomly assigned instrument with a
nonzero first stage, satisfying both monoton-
icity and an exclusion restriction, the ratio of
reduced form to first stage is LATE, the aver-

age causal effect of treatment on compliers.6

Recall (from Section 1.1) that Y1i denotes the
outcome for i with the treatment switched
on, while Y0i is the outcome for the same
person with treatment switched off. Using
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this notation and the parameters defined
above, LATE can be written:

Without stronger assumptions, such as a
constant causal effect for everybody (this is
the model described by equation (1.3) in
Chapter 1), LATE needn’t describe causal ef-
fects on never-takers and always-takers.

It shouldn’t surprise you that an instru-
mental variable is not necessarily helpful for
learning about effects on people whose treat-
ment status cannot be changed by manipu-
lating the instrument. The good news here is
that the population of compliers is a group
we’d like to learn about. In the KIPP ex-
ample, compliers are children likely to at-
tend KIPP were the network to expand and
offer additional seats in a lottery, perhaps as
a consequence of opening a new school in
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the same area. In Massachusetts, where the
number of charter seats is capped by law, the
consequences of charter expansion is the
education policy question of the day.

Researchers and policymakers are some-
times interested in average causal effects for
the entire treated population, as well as in
LATE. This average causal effect is called the
treatment effect on the treated (TOT for
short). TOT is written E[Y1i − Y0i|Di = 1]. As
a rule, there are two ways to be treated, that
is, to have Di switched on. One is to be
treated regardless of whether the instrument
is switched off or on. As we’ve discussed, this
is the story of Alvaro, an always-taker. The
remainder of the treated population consists
of compliers who were randomly assigned Zi

= 1. In the KIPP study, the treated sample in-
cludes compliers who were offered a seat
(like Camila) and always-takers (like Alvaro)
who attend KIPP no matter what. The
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population of compliers who were randomly
offered a seat is representative of the popula-
tion of all compliers (including compliers
who lose the lottery and go to public
schools), but effects on always-takers need
not be the same as effects on compliers. We
might imagine, for example, that Alvaro is an
always-taker because his mother senses that
KIPP will change his life. The causal effect he
experiences is therefore larger than that ex-
perienced by less-committed treated applic-
ants, that is, by treated compliers.

Because the treated population includes
always-takers, LATE and TOT are usually
not the same. Moreover, neither of these av-
erage causal effects need be the same over
time or in different settings (such as at
charter schools with fewer minority applic-
ants). The question of whether a particular
causal estimate has predictive value for
times, places, and people beyond those
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represented in the study that produced it is
called external validity. When assessing ex-
ternal validity, masters must ask themselves
why a particular LATE estimate is big or
small. It seems likely, for example, that KIPP
boosts achievement because the KIPP recipe
provides a structured educational environ-
ment in which many children—but perhaps
not all—find it easy to learn. Children who
are especially bright and independent might
not thrive at KIPP. To explore the external
validity of a particular LATE, we can use a
single instrument to look at estimates for dif-
ferent types of students—say, those with
higher or lower baseline scores. We can also
look for additional instruments that affect
different sorts of compliers, a theme taken
up in Section 3.3. As with estimates from
randomized trials, the best evidence for the
external validity of IV estimates comes from
comparisons of LATEs for the same or
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similar treatments across different
populations.

3.2 Abuse Busters

The police were called to O. J. Simpson’s Los
Angeles mansion at least nine times over the
course of his marriage to Nicole Brown
Simpson. But the former National Football
League superstar, nicknamed “The Juice,”
was arrested only once, in 1989, when he
pleaded no contest to a charge of spousal ab-
use in an episode that put Nicole in the hos-
pital. Simpson paid a small fine, did token
community service, and was ordered to seek
counseling from the psychiatrist of his
choice. The prosecutor in the 1989 case,
Robert Pingle, noted that Nicole had not
been very cooperative with authorities in the
aftermath of her severe beating. Five years
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later, Nicole Brown Simpson and her com-
panion Ronald Goldman were murdered by
an unknown intruder whom many believe

was Nicole’s ex-husband, O.J.7

How should police respond to domestic vi-
olence? Like Nicole Brown Simpson, abuse
victims are often reluctant to press charges.
Arresting batterers without victim coopera-
tion may be pointless and could serve to ag-
gravate an already bad situation. To many
observers and not a few police officers, social
service agencies seem best equipped to re-
spond to domestic violence. At the same
time, victim advocates worry that the failure
to arrest batterers signals social tolerance for
violent acts that, if observed between
strangers, would likely provoke a vigorous
law enforcement response.

In the wake of a heated policy debate, the
mayor and police chief of Minneapolis
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embarked on a pathbreaking experiment in
the early 1980s. The Minneapolis Domestic
Violence Experiment (MDVE) was designed

to assess the value of arresting batterers.8

The MDVE research design incorporated
three treatments: arrest, ordering the sus-
pected offender off the premises for 8 hours
(separation), and a counseling intervention
that might include mediation by the officers
called to the scene (advice). The design
called for one of these three treatments to be
randomly selected whenever participating
Minneapolis police officers encountered a
situation meeting experimental criteria (spe-
cifically, probable cause to believe that a co-
habitant or spouse had committed misde-
meanor assault against a partner in the past
4 hours). Cases of life-threatening or severe
injury (that is, felony assault) were excluded.
Both suspect and victim had to be present at
the time officers arrived. The primary
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outcome examined by the MDVE was the re-
occurrence of a domestic assault at the same
address within 6 months of the original ran-
dom assignment.

The MDVE randomization device was a
pad of report forms randomly color-coded
for three possible responses: arrest, separa-
tion, and advice. Officers who encountered a
situation that met experimental criteria were
to act according to the color of the form on
top of the pad. The police officers who parti-
cipated in the experiment had volunteered to
take part and were therefore expected to im-
plement the research design. At the same
time, everyone involved with the study un-
derstood that strict adherence to the ran-
domization protocol was unrealistic and
inappropriate.
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TABLE 3.3
Assigned and delivered treatments in the

MDVE

Notes: This table shows percentages and counts for the
distribution of assigned and delivered treatments in the
Minneapolis Domestic Violence Experiment (MDVE). The
first three columns show row percentages. The last column
reports column percentages. The number of cases appears
in parentheses.

In practice, officers often deviated from
the responses called for by the color of the
report form drawn at the time of an incident.
In some cases, suspects were arrested even
though random assignment called for separ-
ation or advice. Most arrests in these cases
occurred when a suspect attempted to
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assault an officer, a victim persistently de-
manded an arrest, or when both parties were
injured. A few deviations arose when officers
forgot their report forms. As a result of these
deviations from the experimental protocol,
treatment delivered was not random. This
can be seen in Table 3.3, which tabulates
treatments assigned and delivered. Almost
every case assigned to arrest resulted in ar-
rest (91 of 92 cases assigned), but many
cases assigned to the separation or advice
treatments also resulted in arrest.

The contrast between arrest, which usually
resulted in a night in jail, and gentler altern-
atives generates the most interesting and
controversial findings in the MDVE. Table
3.3 therefore combines the two nonarrest
treatments under the heading “coddled.”
Random assignment had a large but not de-
terministic effect on the likelihood a suspec-
ted batterer was coddled: A case assigned to
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be coddled was coddled with probability
; while a case not assigned to

coddling (that is, assigned to arrest) was
coddled with probability .011 (1/92). Because
coddling was not delivered randomly, the
MDVE looks like a broken experiment. IV
methods, however, readily fix it.

When LATE Is the Effect on the Treated

The LATE framework is motivated by an
analogy between IV and randomized trials.
But some instrumental variables really come
from randomized trials. IV methods allow us
to capture the causal effect of treatment on
the treated in spite of the nonrandom com-
pliance decisions made by participants in ex-
periments like the MDVE. In fact, the use of
IV is usually necessary in such experiments.
A naive analysis of the MDVE data based on
treatment delivered is misleading.
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Analysis of the MDVE based on treatment
delivered is misleading because the cases in
which police officers were supposed to
coddle suspected batterers and actually did
so are a nonrandom subset of all cases as-
signed to coddling. Comparisons of those
who were and were not coddled are therefore
contaminated by selection bias. Batterers
who were arrested when assigned to cod-
dling were often especially aggressive or agit-
ated. Use of randomly assigned intention to
treat as an instrumental variable for treat-
ment delivered eliminates this source of se-
lection bias.

As always, an IV chain reaction begins

with the first stage.9 The MDVE first stage is
the difference between the probability of be-
ing coddled when assigned to be coddled and
the probability of being coddled when as-
signed to be arrested. Let Zi indicate
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assignment to coddling, and let Di indicate
incidents where coddling was delivered. The
first stage for this setup is

a large gap, but still far from the difference of
1 we’d get if compliance had been perfect.

Unfortunately, domestic abuse is often a
repeat offense, as can be seen in the fact the
police were called for a second domestic viol-
ence intervention at 18% of the addresses in
the MDVE sample. Most importantly from
the point of view of MDVE researchers, re-
cidivism was greater among suspects as-
signed to be coddled than among those as-
signed to be arrested. We learn this by calcu-
lating the effect of random assignment to
coddling on an outcome variable, Yi, that in-
dicates at least one post-treatment episode of
suspected abuse:
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Given that the overall recidivism rate is 18%,
this estimated difference of 11 percentage
points is substantial.

In randomized trials with imperfect com-
pliance, where treatment assigned differs
from treatment delivered, effects of random
assignment such as that calculated in equa-
tion (3.3) are called intention-to-treat (ITT)
effects. An ITT analysis captures the causal
effect of being assigned to treatment. But an
ITT analysis ignores the fact that some of
those assigned to be coddled were neverthe-
less arrested. Because the ITT effect does not
take this noncompliance into account, it’s
too small relative to the average causal effect
of coddling on those who were indeed
coddled. This problem, however, is easily ad-
dressed: ITT effects divided by the difference
in compliance rates between treatment and
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control groups capture the causal effect of
coddling on compliers who were coddled as a
result of the experiment.

Dividing ITT estimates from a randomized
trial by the corresponding difference in com-
pliance rates is another case of IV in action:
We recognize ITT as the reduced form for a
randomly assigned instrument, specifically,
random assignment to coddling. As we’ve
seen, many suspected batterers assigned to
be coddled were nevertheless arrested. The
regression of a dummy for having been
coddled on a dummy for random assignment
to coddling is the first stage that goes with
this reduced form. The IV causal chain be-
gins with random assignment to treatment,
runs through treatment delivered, and ulti-
mately affects outcomes.

The LATE estimate that emerges from the
MDVE data is impressive: .114/.786 = .145, a
large coddling effect, even in comparison
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with the corresponding ITT estimates. Re-
markably, even though officers on the scene
were highly selective in choosing whether to
follow the experimental protocol, this estim-
ate of LATE is likely to be a good measure of
the causal effect of treatment delivered.

As always, the causal interpretation of
LATE turns in part on the relevant exclusion
restriction, which requires that the treatment
variable of interest be the only channel
through which the instrument affects out-
comes. In the MDVE, the IV chain reaction
begins with the color of police officers’ incid-
ent report forms. The exclusion restriction
here requires that randomly assigned form
color affect recidivism solely through the de-
cision to arrest or to coddle suspected batter-
ers. This seems like a reasonable assump-
tion, all the more so as batterers and victims
were unaware of their participation in an ex-
perimental study.
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Are the modest complications of an IV
analysis really necessary? Suppose we ana-
lyze the MDVE using information on treat-
ment delivered, ignoring the nonrandom
nature of decisions to comply with random
assignment. The resulting analysis compares
recidivism among those who were and were
not coddled, with no further complications
or adjustments:

The estimated effect here is quite a bit smal-
ler than the IV estimate of almost 15 percent-
age points.

Chapter 1 shows that without random as-
signment, comparisons of treated and un-
treated subjects equal the causal effect of in-
terest plus selection bias. The selection bias
that contaminates a naive analysis of the
MDVE is the difference in potential
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recidivism (that is, in Y0i) between batterers
who were and were not coddled. Although
much of the variation in coddling was pro-
duced by random assignment, officers on the
scene also used discretion. Batterers who
were arrested even though they’d been ran-
domly assigned to be coddled were often es-
pecially violent or agitated, while suspects in
cases where officers complied with a cod-
dling assignment were typically more sub-
dued. In other words, batterers who were
coddled were less likely to abuse again in any
case. The resulting selection bias leads the
calculation based on treatment delivered to
underestimate the impact of coddling. In
contrast with the KIPP study (discussed in
Section 3.1), selection bias matters here.

IV analysis of the MDVE eliminates selec-
tion bias, capturing average causal effects on
compliers (in this case, the effect of coddling
batterers in incidents in which officers were
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willing to comply with random assignment to
coddling). An interesting and important fea-
ture of the MDVE is the virtually one-sided
nature of noncompliance in treatment de-
livered. When randomized to arrest, the po-
lice faithfully arrested (with only one excep-
tion in 92 cases). By contrast, more than
20% of those assigned to be coddled were
nevertheless arrested.

The asymmetry in coddling compliance
means there were almost no always-takers in
the MDVE. In our IV analysis of the MDVE,
always-takers are suspected batterers who
were coddled without regard to treatment as-
signed. The size of this group is given by the
probability of coddling when assigned to ar-
rest, in this case, only 1/92. As we noted in
Section 3.1, any treated population is the
union of two groups, the set of compliers
randomly assigned to be treated and the set
of always-takers. With no always-takers, all

312/694

text/part0010.html#sec_10


of the treated are compliers, in which case,
LATE is TOT:

Applying the no-always-takers property to
the MDVE, we see that LATE is the average
causal effect of coddling on the coddled. Spe-
cifically, the TOT estimate emerging from
the MDVE contrasts recidivism among the
coddled (E[Y1i|Di = 1]) with the rates we
would observe in a counterfactual world in
which coddled batterers were arrested in-
stead (E[Y0i|Di = 1]). This important simpli-
fication of the usual LATE story emerges in
any IV analysis with no always-takers, in-
cluding many other randomized trials with
one-sided noncompliance. When some of
those randomly assigned to treatment go un-
treated, but no one randomly assigned to the
control group gets treated, IV methods using
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random intention to treat as an instrument

for treatment delivered capture TOT.10

A final note on how much good ’metrics
matters: It’s hard to overstate the impact of
the MDVE on U.S. law enforcement. Batter-
ers in misdemeanor domestic assault cases
are now routinely arrested. In many states,
arrest in cases of suspected domestic abuse
has become mandatory.

GRASSHOPPER: Master, the O.J. case came
a decade after the MDVE. The path-
breaking MDVE research design did not
save Nicole Brown and Ron Goldman.

MASTER JOSHWAY: Social change happens
slowly, Grasshopper. And the original
MDVE analysts reported naive estimates
based on treatment delivered, along
with intention-to-treat effects. The IV
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estimates in my 2006 study are much
larger.

GRASSHOPPER: Would Nicole and Ron
have been saved if earlier analysts had
used instrumental variables?

MASTER JOSHWAY: There are some things
we can never know.

3.3 The Population Bomb

Population control or race to oblivion?
Paul Ehrlich, 1968

World population increased from 3 billion to
6 billion between 1960 and 1999, a doubling
time of 39 years, and about half as long as
the time it took to go from 1.5 billion to 3 bil-
lion. Only a dozen years passed before the
seventh billion came along. But contempor-
ary demographers agree that population
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growth has slowed dramatically. Projections
using current fertility rates point to a doub-
ling time of 100 years or more, perhaps even
forever. One widely quoted estimate has

population peaking at 9 billion in 2070.11

Contemporary hand-wringing about sustain-
able growth notwithstanding, the population
bomb has been defused—what a relief!

The question of how population growth af-
fects living standards has both a macro side
and a micro side. Macro demography traces
its roots to the eighteenth-century English
scholar Thomas Malthus, who argued that
population size increases when food output
increases, so much so that productivity gains
fail to boost living standards. The unhappy
Malthusian outcome is characterized by a
permanent subsistence-level existence for
most people. This pessimistic view of eco-
nomic growth has repeatedly been falsified
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by history, but that hasn’t prevented it from
gaining traction among latter-day doomsay-
ers. Biologist Paul Ehrlich’s 1968 blockbuster
The Population Bomb famously argued for a
Malthusian scenario featuring imminent
mass starvation in India. Since then, India’s
population has tripled, while Indian living

standards have increased markedly.12

Economists have turned a micro lens on
the relationship between family size and liv-
ing standards. Here, attention focuses on the
ability of households of different sizes to
support a comfortable standard of living. We
might indeed expect increases in family size
to be associated with increased poverty and
reduced education—more mouths to feed
means less for each—and that’s what simple
correlations show. A more elaborate theoret-
ical rationalization for this powerful relation
comes from the work of the late Gary Becker
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and his collaborators. These studies intro-
duced the notion of a “quantity-quality
tradeoff,” the idea that reductions in family
size increase parental investment in chil-
dren. For example, parents with fewer chil-
dren might guard their children’s health
more closely and invest more in their school-

ing.13

On the policy side, the view that smaller
families are essential for increasing living
standards has motivated international agen-
cies and many governments to promote, and
occasionally even to require, smaller famil-
ies. China led the way with the controversial
One Child Policy, implemented in 1979. Oth-
er aggressive government-sponsored family
planning efforts include a forced-sterilization
program in India and the public promotion
of family planning in Mexico and Indonesia.
By 1990, 85% of people in the developing
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world lived in countries where the govern-
ment considered high fertility to be a major

force perpetuating poverty.14

The negative correlation between average
family size and development indicators like
schooling is hard to argue with. Is there a
causal connection between family size and
children’s education? The challenge in an-
swering this question, as always, is the
paribus-ness of the ceteris. For the most
part, fertility is determined by the choices

parents make.15 Not surprisingly, therefore,
women with large families differ in many
ways from those with smaller families; they
tend to be less educated, for example. And
the children of less-educated mothers tend to
be less educated themselves. Marked differ-
ences in observable characteristics across
families of different sizes raise the red flag of
selection bias. Since women with different
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numbers of children are so observably differ-
ent, we must acknowledge the possibility of
important unobserved differences associated
with family size as well.

As always, the ideal solution to an omitted
variables problem is random assignment. In
this case, the experiment might go like this.
(i) Draw a sample of families with one child.
(ii) In some of these households, randomly
distribute an additional child. (iii) Wait 20
years and collect data on the educational at-
tainment of firstborns who did and did not
get an extra sibling. Of course, we aren’t
likely to see such an experiment any time
soon. Clever masters might, however, find
sources of variation that reveal the causal
connection between family size and school-
ing without the benefit of a real experiment.
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Which brings us to the question of where
babies come from. As most of our readers
will know, human infants are delivered to
households by a long-legged, long-necked
bird called a stork (though it’s a myth that
the infant is dropped down the chim-
ney—chimneys have a damper that prevents
delivery of a live infant). Delivery occurs 9
months after a woman, whom we will refer to
as the “mother,” declares her intention to
have a child. Storks are unresponsive to the
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wishes of men (except when these wishes are
passed on by women), so we focus here on
the notional experiment from the point of
view of the mother and her oldest child.

The experiment we have in mind is the ad-
dition of children to households that have
one already. The first-born child is our ex-
perimental subject. The ’metrics challenge is
how to generate “as good as randomly as-
signed” variation in family size for these sub-
jects. Unfortunately, the Association of Stork
Midwives rejects random assignment as un-
natural. But storks nevertheless generate cir-
cumstantially random variation in family
size by sometimes delivering more than one
child in the form of twins (a consequence of
the fact that storks are large and infants are
small, so storks sometimes scoop multiples
when picking babies in the infant storage
warehouse). The fact that twins induce a
family size experiment was first recognized
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in a pioneering study by Mark Rosenzweig
and Kenneth Wolpin, who used a small
sample of twins to investigate the quantity-

quality trade-off in India.16

To exploit the twins experiment, we turn
to a large sample from Israel, analyzed in a
study of the quantity-quality tradeoff by
Master Joshway, with colleagues Victor Lavy
and Analia Schlosser (the “ALS study” for

short).17 Israel makes for an interesting case
study because it has a very diverse popula-
tion, including many people who were born
in developing countries and into large famil-
ies. About half of the Israeli Jewish popula-
tion is of European ancestry, while the other
half has roots in Asia or Africa. Quite a few
Arabs live in Israel as well, but the data for
Israeli non-Jews are less complete than for
Jews. An attractive feature of the Israeli Jew-
ish sample, besides ethnic diversity and
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larger families than are found in most de-
veloped countries, is the availability of in-
formation on respondents’ families of origin,
including the age and sex of their siblings.
This unusual data structure is the foundation
of the ALS empirical strategy.

We focus here on a group of first-born
adults in a random sample of men and wo-
men born to mothers with at least two chil-
dren. These firstborns have at least one
younger sibling, but many have two or more.
Consider a family in which the second birth
is a singleton. On average, such families in-
clude 3.6 children. A second twin birth,
however, increases average family size by
.32, that is, by about one-third of a child.
Why do twin births increase family size by a
Solomonic fractional child? Many Israeli
parents would like three or four children;
their family size is largely unaffected by the
occurrence of a multiple twin birth, since
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they were going to have more than two chil-
dren either way. On the other hand, some
families are happy with only two children.
The latter group is forced to increase family
size from two to three when the stork deliv-
ers twins. The one-third-of-a-child twins dif-
ferential in family size reflects a difference in
probabilities: the likelihood of having a third
child increases from about .7 with a singleton
second birth to a certainty when the second
birth is multiple. The .3 figure comes from
the fact that the difference between a prob-
ability of 1 and probability of .7 is .3.

A simple regression of adult firstborns’
highest grade completed on family size
shows that each extra sibling is associated
with a reduction of about one-quarter of a
year of schooling (these results come from a
model with age and sex controls). On the
other hand, as the ALS study shows, even
though first-born adults with second-born
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twin siblings were raised in larger families,
they are no less educated than first-born
adults in families where the second-born
child was a singleton. The comparison of
schooling between firstborns with twin and
singleton siblings constitutes the reduced
form for an IV estimate that uses twin births
as an instrument for family size.

IV estimates are constructed from the ra-
tio of reduced-form to first-stage estimates,
so a reduced form of zero immediately sug-
gests the causal effect of sibship size is also
zero. The fact that the twins reduced-form
and associated IV estimates are close to zero
weighs against the view that a larger family
of origin reduces children’s schooling. In
other words, the twins experiment generates
no evidence of a quantity-quality tradeoff.

Multiple births have a marked effect on
family size, but the twins experiment isn’t
perfect. Because the Association of Stork
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Midwives refuses to use random assignment,
there’s some imbalance in the incidence of
twinning. Multiple births are more frequent
among mothers who are older and for wo-
men in some racial and ethnic groups. This
potentially leads to omitted variables bias in
our analysis of the twins experiment, espe-
cially if some of the characteristics that boost
twinning are hard to observe and control

for.18 Luckily, a second fertility experiment
provides evidence on the quantity-quality
trade-off.

In many countries, fertility is affected by
sibling sex composition. For one thing, par-
ents often hope for a son; son preference is
particularly strong in parts of Asia. In
Europe, the Americas, and Israel, parents
seem to care little about whether children
are male or female. Rather, many parents
hope for a diversified sibling-sex portfolio:

327/694

text/part0010.html#ch-fn18


Families whose first two children are both
boys or both girls are more likely to have a
third child. Because the sex of a newborn is
essentially randomly assigned (male births
occur about half the time and, in the absence
of sex-selective abortion, little can be done to
change this), parental preferences for mixed
sibling-sex composition generate sex-mix
instruments.

First-born Israeli adults who have a
second-born sibling of the opposite sex grew
up in households with about 3.60 children.
But firstborns whose second-born sibling is
of the same sex were raised in families with
3.68 children. In other words, the same-sex
first stage for Israeli firstborns is about .08.
As with the twins first stage, this differential
reflects changes in the probability of child-
bearing induced by an instrument. In this
case, the instrumental variable is a dummy
variable that equals 1 for families whose first
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two children are both male or both female
and equals 0 for families with one boy and
one girl. While the sex-mix first stage is
smaller than that arising from twinning, the
number of families affected by same-sex sib-
ships is much larger than the number of fam-
ilies affected by twinning. About half of all
families with at least two children have
either two boys or two girls at births number
one and number two. By contrast, only about
1% of mothers have twins. Sibling sex com-
position also has a leg up on twinning in be-
ing unrelated to maternal characteristics,
such as age at birth and race (as shown by
ALS and in an earlier study by Master Josh-

way and William Evans).19

As it turns out, the educational attainment
of first-born Israeli adults is unaffected by
their siblings’ sex composition. For example,
the average highest grade completed by
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firstborns from families with mixed- and
same-sex sibships is about equal at 12.6.
Thus, the same-sex reduced form, and there-
fore the corresponding IV estimates, are
both zero. Like the twins experiment, fertility
changes generated by differences in sibling
sex composition show no evidence of a
quantity-quality trade-off.

The exclusion restriction required for a
causal interpretation of sex-mix IV estimates
asserts that sibling sex composition matters
for adult outcomes only insofar as it changes
family size. Might the sex-mix of the first two
children affect children’s educational out-
comes for other reasons? Two boys and two
girls are likely to share a bedroom longer
than mixed-sex siblings, for example, and
same-sex siblings may make better use of
hand-me-down clothing. Such household ef-
ficiencies might make families with a same-
sex sibship feel a little richer, a feeling that
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may ultimately increase parental investment
in their children’s schooling.

Can we test the exclusion restriction? Not
directly, but, as is often the case, evidence
can be brought to bear on the question. For
some mothers, sex composition is unlikely to
affect fertility. For example, in an Israeli
sample, religious women who plan to have
three or more children are always-takers for
sex-mix instruments. On the other hand,
highly educated women, most of whom plan
small families, are never-takers if their fertil-
ity behavior is unchanged by sex mix. Be-
cause the fertility of always-takers and
never-takers is unchanged by sibling sex
composition, any relationship between sex-
mix instruments and outcomes in samples
with few compliers may signal violations of
the underlying exclusion restriction.

We can express this idea more formally us-
ing the representation of LATE in equation
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(3.2). This expression defines LATE as the
ratio of reduced-form to first-stage paramet-
ers, that is:

which implies in turn that the reduced form,
ρ, is the product of the first stage and LATE:

From this we conclude that in samples where
the first stage, ?, is zero, the reduced form
should be zero as well. On the other hand, a
statistically significant reduced-form estim-
ate with no evidence of a corresponding first
stage is cause for worry, because this sug-
gests some channel other than the treatment
variable (in this case, family size) links in-
struments with outcomes. In this spirit, ALS
identified demographic groups for which the
effect of twins and sex-composition
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instruments on family size is small and not
significantly different from zero. These “no-
first-stage samples” generate no evidence of
significant reduced-form effects that might
signal violations of the exclusion restriction.

One-Stop Shopping with Two-Stage
Least Squares

IV estimates of causal effects boil down to
reduced-form comparisons across groups
defined by the instrument, scaled by the ap-
propriate first stage. This is a universal IV
principle, but the details vary across applica-
tions. The quantity-quality scenario differs
from the KIPP story in that we have more
than one instrument for the same underlying
causal relation. Assuming that twins and sex-
mix instruments both satisfy the required as-
sumptions and capture similar average
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causal effects, we’d like to combine the two
IV estimates they generate to increase stat-
istical precision. At the same time, twinning
might be correlated with maternal character-
istics like age at birth and ethnicity, leading
to bias in twins IV estimates. We’d therefore
like a simple IV procedure that controls for
maternal age and any other confounding
factors. This suggests a payoff to integrating
the IV idea with the regression methods dis-
cussed in Chapter 2.

Two-stage least squares (2SLS) general-
izes IV in two ways. First, 2SLS estimates use
multiple instruments efficiently. Second,
2SLS estimates control for covariates,
thereby mitigating OVB from imperfect in-
struments. To see how 2SLS works, it helps
to rewrite the first stage (?) and reduced
form (ρ) parameters as regression coeffi-
cients instead of differences in means. Start-
ing with a single instrument, say, a dummy
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variable for multiple second births denoted
by Zi, the reduced-form effect can be written
as the coefficient ρ in the regression
equation:

As we noted in the appendix to Chapter 2, re-
gression on a constant term and a single
dummy variable produces the difference in
the conditional means of the dependent vari-
able with the dummy switched off and on.
The coefficient on Zi in equation (3.4) is
therefore

Likewise, the first-stage effect of Zi is the
coefficient ? in the first-stage equation:
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where ? = E[Di|Zi = 1] − E[Di|Zi = 0]. Since λ
= ρ/?, we conclude that LATE is the ratio of
the slope coefficients in regressions (3.4) and
(3.5).

The 2SLS procedure offers an alternative
way of computing ρ/?. The 2SLS name
comes from the fact that LATE can be ob-
tained from a sequence of two regressions. In
the 2SLS first stage, we estimate equation
(3.5) and save the fitted values, . These
“first-stage fits” are defined as

The 2SLS second stage regresses Yi on , as
in

The value of λ2SLS generated by this second
step is identical to the ratio of reduced form
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to first-stage regression coefficients, ρ/?, a
theoretical relationship derived in the
chapter appendix.

Control variables like maternal age fit
neatly into this two-step regression frame-

work.20 Adding maternal age, denoted Ai,
the reduced form and first stage look like

Here, the first-stage fitted values come from
models that include the control variable, Ai:

2SLS estimates are again constructed by re-
gressing Yi on both and Ai. Hence, the
2SLS second-stage equation is

which also includes Ai.
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The 2SLS setup allows as many control
variables as you like, provided they appear in
both the first and second stages. As dis-
cussed in the chapter appendix, the
corresponding covariate-adjusted LATE can
still be constructed from the ratio of
reduced-form to first-stage coefficients, ρ/?.
Indeed, we should separately inspect the up-
stairs and downstairs in this ratio to make
sure all on both floors is kosher. But when it
comes time to report results to the public,
2SLS is the way to go even in relatively
simple scenarios like this one. Econometrics
software packages compute 2SLS estimates
directly, reducing the scope for mistakes and
generating appropriate standard errors at no

extra charge.21

What about our second family-size instru-
ment, a dummy for same-sex sibships? Call
this Wi (where Wi = 1 indicates two girls or
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two boys, and Wi = 0 otherwise). Here, too,
control variables are called for, in particular,
the sex of the first-born, which we code as a
dummy, Bi, indicating first-born boys (as a
rule, boys are born slightly more often than
girls, so the probability of a same-sex pair is
slightly higher when the firstborn is male).
With two instruments, Wi and Zi, and the ex-
tra control variable, Bi, the 2SLS first stage
becomes

The first-stage effects of the twins and sex-
mix instruments are distinguished by sub-
scripts t for twins and s for sex-mix: we write
these as ?t and ?s. Both instruments appear
with similarly subscripted coefficients in the
corresponding reduced form as well:
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With these ingredients at hand, it’s time to
cook!

Second-stage estimates with two instru-
ments and two covariates are generated by
the regression equation

where the fitted values, , come from first-
stage equation (3.10). Note that the covari-
ates appear at every turn: in the first and
second stages, and in the reduced form.
Equation (3.11) produces a weighted average
of the estimates we’d get using the instru-
ments Zi and Wi one at a time, while con-
trolling for covariates Ai and Bi. When the in-
struments generate similar results when
used one at a time, the 2SLS weighted aver-
age is typically a more precise estimate of
this common causal effect.
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TABLE 3.4
Quantity-quality first stages

Notes: This table reports coefficients from a regression
of the number of children on instruments and covariates.
The sample size is 89,445. Standard errors are reported in
parentheses.

2SLS offers a wonderfully flexible frame-
work for IV estimation. In addition to incor-
porating control variables and using multiple
instruments efficiently, the framework ac-
commodates instruments of all shapes and
sizes, not just dummy variables. In practice,
however, masters use special-purpose
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statistical software to calculate 2SLS estim-
ates instead of estimating regressions on fit-
ted values like (3.11). Estimation of this
equation, known as “manual 2SLS,” doesn’t
produce the correct standard errors needed
to measure sampling variance. The chapter
appendix explains why.

Estimates of twins and sex-mix first stages
with and without covariates appear in Table
3.4. The estimate from a first-stage model
with controls, reported in column (2) of the
table, shows that first-born Israeli adults
whose second-born siblings were twin were
raised in families with about .44 more chil-
dren than those raised in families where the
second birth was a singleton. This first-stage
estimate is larger than the estimate of .32
computed without controls (reported in
column (1)). The OVB formula therefore tells
us that twin births are associated with
factors that reduce family size, like older
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maternal age. Adjusting for maternal age and
other possible confounding factors boosts
the twins first stage. On the other hand, the
same-sex first stage of .073 generated by a
model with covariates is close to the uncon-
trolled estimate of .079, since sex mix is es-
sentially unrelated to the included controls
(these estimates can be seen in columns (3)
and (4)). The fact that the first-born is male
also has little effect on the size of his family.
This can be seen in the small, marginally sig-
nificant male coefficients reported in the last
row (this is the only covariate coefficient re-
ported in the table, though the presence of
other controls is indicated in the bottom

row).22

Second-stage estimates of the quantity-
quality trade-off are reported in Table 3.5,
along with the corresponding estimates from
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a conventional (that is, uninstrumented)
OLS regression of the form

The conventional regression estimates in
column (1) show a strong negative relation
between family size and education outcomes,
even after adjusting for family background
variables related to ethnicity and mother’s
age at birth. By contrast, the 2SLS estimates
generated by twins instruments, reported in
column (2) of the table, mostly go the other
way, though the 2SLS estimates in this case
are not significantly different from zero. Es-
timation using sex-composition instruments
reinforces the twins findings. The 2SLS es-
timates in column (3) show uniformly posit-
ive effects of family size on education
(though only one of these is significantly dif-
ferent from zero).
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TABLE 3.5
OLS and 2SLS estimates of the quantity-

quality trade-off

Notes: This table reports OLS and 2SLS estimates of the
effect of family size on schooling. OLS estimates appear in
column (1). Columns (2), (3), and (4) show 2SLS estimates
constructed using the instruments indicated in column
headings. Sample sizes are 89,445 for rows (1) and (2);
50,561 for row (3); and 50,535 for row (4). Standard errors
are reported in parentheses.

An important feature of both the twins and
sex-composition second stages is their preci-
sion, or lack thereof. IV methods discard all
variation in fertility except that generated by
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the instrument. This can leave too little vari-
ation for statistically conclusive findings. We
can increase precision, however, by pooling
multiple instruments, especially if, when
taken one at a time, the instruments gener-
ate similar findings (in this case, both twins
and sex-composition instruments show little
evidence of a quantity-quality trade-off). The
resulting pooled first-stage estimates appear
in column (5) of Table 3.4, while the
corresponding second-stage results are re-
ported in column (4) of Table 3.5.

The pooled second-stage estimates are not
very different from those generated using the
instruments one at a time, but the standard
errors are appreciably smaller. For example,
the estimated effect of family size on highest
grade completed using both instruments is
.24, with a standard error of .13, a marked
drop from the standard errors of about .17
and .21 using twins and same-sex
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instruments one at a time. Importantly, the
regression estimate in column (1), a very pre-
cise −.15 for highest grade completed, lies
well outside the confidence interval associ-

ated with the 2SLS estimate in column (4).23

This suggests that the strong negative associ-
ation between family size and schooling is
driven in large part and perhaps entirely by
selection bias.

MASTER JOSHWAY: Build the house of IV,
Grasshopper.

GRASSHOPPER: The foundation has three
layers: (i) the first-stage requires instru-
ments that affect the causal channel of
interest; (ii) the independence assump-
tion requires instruments to be as good
as randomly assigned; (iii) the exclusion
restriction asserts that a single causal
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channel connects instruments with
outcomes.

MASTER JOSHWAY: Can these assumptions
be checked?

GRASSHOPPER: Check the first stage by
looking for a strong relationship
between instruments and the proposed
causal channel; check independence by
checking covariate balance with the in-
strument switched off and on, as in a
randomized trial.

MASTER JOSHWAY: And exclusion?

GRASSHOPPER: The exclusion restriction is
not easily verified. Sometimes, however,
we may find a sample where the first
stage is very small. Exclusion implies
such samples should generate small
reduced-form estimates, since the hypo-
thesized causal channel is absent.

MASTER JOSHWAY: How are IV estimates
computed?
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GRASSHOPPER: Statistical software
computes two-stage least squares estim-
ates for us. This allows us to add covari-
ates and use more than one instrument
at a time. But we look at the first-stage
and reduced-form estimates as well.

Masters of ’Metrics: The Remark-
able Wrights

The IV method was invented by economist
Philip G. Wright, assisted by his son, Sewall,
a geneticist. Philip wrote frequently about
agricultural markets. In 1928, he published

The Tariff on Animal and Vegetable Oils.24

Most of this book is concerned with the
question of whether the steep tariffs on farm
products imposed in the early 1920s be-
nefited domestic producers. A 1929 reviewer
noted that “Whatever the practical value of
the intricate computation of elasticity of
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demand and supply as applied particularly to
butter in this chapter, the discussion has

high theoretical value.”25

In competitive markets, shifting supply
and demand curves simultaneously generate
equilibrium prices and quantities. The path
from these observed equilibrium prices and
quantities to the underlying supply and de-
mand curves that generate them is unclear.
The challenge of how to derive supply and
demand elasticities from the observed rela-
tionship between prices and quantities is
called an identification problem. At the time
Philip was writing, econometric identifica-
tion was poorly understood. Economists
knew for sure only that the observed rela-
tionship between price and quantity fails to
capture either supply or demand, and is
somehow determined by both.
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Appendix B of The Tariff on Animal and
Vegetable Oils begins with an elegant state-
ment of the identification problem in simul-
taneous equations models. The appendix
then goes on to explain how variables
present in one equation but excluded from
another solve the identification problem.
Philip referred to such excluded variables as
“external factors,” because, by shifting the
equation in which they appear, they trace out
the equation from which they’re omitted
(that is, to which they are external). Today
we call such shifters instruments. Philip de-
rived and then used IV to estimate supply
and demand curves in markets for butter and
flaxseed (flaxseed is used to make linseed oil,
an ingredient in paint). Philip’s analysis of
the flaxseed market uses prices of substitutes
as demand shifters, while farm yields per
acre, mostly driven by weather conditions,
shift supply.
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Appendix B was a major breakthrough in
’metrics thought, remarkable and unexpec-
ted, so much so that some have wondered
whether Philip really wrote it. Perhaps Ap-
pendix B was written by Sewall, a distin-
guished scholar in his own right. Like ’met-
rics masters Galton and Fisher, profiled at
the end of Chapters 1 and 2, Sewall was a ge-
neticist and statistician. Well before the ap-
pearance of Appendix B, Sewall had de-
veloped a statistical method called “path
analysis” that was meant to solve problems
related to omitted variables bias. Today we
recognize path analysis as an application of
the multivariate regression methods dis-
cussed in Chapter 2; it doesn’t solve the
identification problem raised by simultan-
eous equations models. Some of Appendix B
references Sewall’s idea of “path coeffi-
cients,” but Philip’s method of external
factors was entirely new.
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Masters James Stock and Francesco
Trebbi investigated the case for Sewall’s au-

thorship using Stylometrics.26 Stylometrics
identifies authors by the statistical regularit-
ies in their word usage and sentence struc-
ture. Stylometrics confirms Philip’s author-
ship of Appendix B. Recently, however, Stock
and his student Kerry Clark uncovered let-
ters between father and son that show the
ideas in Appendix B developing jointly in a
self-effacing give and take. In this exchange,
Philip describes the power and simplicity of
IV. But he wasn’t naive about the ease with
which the method could be applied. In a
March 1926 letter to Sewall, writing on the
prospect of finding external factors, Philip
commented: “Such factors, I fear, especially
in the case of demand conditions, are not

easy to find.”27 The search for identification
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has not gotten easier in the intervening
decades.

Philip’s journey was personal as well as in-
tellectual. He worked for many years as a
teacher at obscure Lombard College in
Galesburg, Illinois. Lombard College failed
to survive the Great Depression, but Philip’s
time there bore impressive fruit. At Lom-
bard, he mentored young Carl Sandburg,
whose loosely structured and evocative
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poetry later made him an American icon.
Here’s Sandburg’s description of the path

blazed by experience:28

THIS morning I looked at the map of the
day

And said to myself, “This is the way! This
is the way I will go;

Thus shall I range on the roads of
achievement,

The way is so clear—it shall all be a joy on
the lines marked out.”

And then as I went came a place that was
strange,—

’Twas a place not down on the map!
And I stumbled and fell and lay in the

weeds,
And looked on the day with rue.

I am learning a little—never to be sure—
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To be positive only with what is past,
And to peer sometimes at the things to

come
As a wanderer treading the night
When the mazy stars neither point nor

beckon,
And of all the roads, no road is sure.

I see those men with maps and talk
Who tell how to go and where and why;
I hear with my ears the words of their

mouths,
As they finger with ease the marks on the

maps;
And only as one looks robust, lonely, and

querulous,
As if he had gone to a country far
And made for himself a map,
Do I cry to him, “I would see your map!
I would heed that map you have!”
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Appendix: IV Theory

IV, LATE, and 2SLS

We first refresh notation for an IV setup with
one instrument and no covariates. The first
stage links instrument and treatment:

The reduced form links instrument and
outcomes:

The 2SLS second stage is the regression of
outcomes on first-stage fitted values:

Note that the LATE formula (3.2) can be
written in terms of first-stage and reduced-
form regression coefficients as
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Here, we’ve used the fact that the differences
in means on the top and bottom of equation
(3.2) are the same as the regression coeffi-
cients, ? and ρ. Written this way, that is, as a
ratio of covariances, λ is called the IV for-
mula. It’s sample analogue is the IV
estimator.

In this simple setup, the regression of Yi

on (the 2SLS second step) is the same as
equation (3.12). This is apparent once we
write out the 2SLS second stage:

In deriving this, we’ve used the rules for vari-
ances and covariances detailed in the ap-
pendix to Chapter 2.
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With covariates included in the first and
second stage—say, the variable Ai, as in our
investigation of the population bomb—the
2SLS second stage is equation (3.9). Here,
too, 2SLS and the IV formula are equivalent,
with the latter again given by the ratio of
reduced-form to first-stage coefficients. In
this case, these coefficients are estimated
with Ai included, as in equations (3.7) and
(3.8):

where is the residual from a regression of
Zi on Ai (this we know from regression ana-
tomy). The details behind the second equals
sign are left for you to fill in.

2SLS Standard Errors
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Just as with sample means and regression
estimates, we expect IV and 2SLS estimates
to vary from one sample to another. We must
gauge the extent of sampling variability in
any particular set of estimates as we decide
whether they’re meaningful. The sampling
variance of 2SLS estimates is quantified by
the appropriate standard errors.

2SLS standard errors for a model that uses
Zi to instrument Di, while controlling for Ai,
are computed as follows. First the 2SLS re-
sidual is constructed using

The standard error for is then given by
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where ση is the standard deviation of ηi, and
is the standard deviation of the first-stage

fitted values, .
It’s important to note that ηi is not the re-

sidual generated by manual estimation of the
2SLS second stage, equation (3.9). This in-
correct residual is

The variance of e2i plays no role in equation
(3.13), so a manual 2SLS second stage gener-
ates incorrect standard errors. The moral is
clear: explore freely in the privacy of your
own computer, but when it comes to the es-
timates and standard errors you plan to re-
port in public, let professional software do
the work.

2SLS Bias
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IV is a powerful and flexible tool, but mas-
ters use their most powerful tools wisely. As
we’ve seen, 2SLS combines multiple instru-
ments in an effort to generate precise estim-
ates of a single causal effect. Typically, a re-
searcher blessed with many instruments
knows that some produce a stronger first
stage than others. The temptation is to use
them all anyway (econometrics software
doesn’t charge more for this). The risk here
is that 2SLS estimates with many weak in-
struments can be misleading. A weak instru-
ment is one that isn’t highly correlated with
the regressor being instrumented, so the
first-stage coefficient associated with this in-
strument is small or imprecisely estimated.
2SLS estimates with many such instruments
tend to be similar to OLS estimates of the
same model. When 2SLS is close to OLS, it’s
natural to conclude you needn’t worry about
selection bias in the latter, but this
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conclusion may be unwarranted. Because of
finite sample bias, 2SLS estimates in a
many-weak IV scenario tell you little about
the causal relationship of interest.

When is finite sample bias worth worrying
about? Masters often focus on the first-stage
F-statistic testing the joint hypothesis that all
first-stage coefficients in a many-instrument
setup are zero (an F-statistic extends the t-
statistic to tests of multiple hypotheses at
once). A popular rule of thumb requires an F
value of at least 10 to put many-weak fears to
rest. An alternative to 2SLS, called the lim-
ited information maximum likelihood estim-
ator (LIML for short) is less affected by finite
sample bias. You’d like LIML estimates and
2SLS estimates to be close to one another,
since the former are unlikely to be biased
even with many weak instruments (though
LIML estimates typically have larger
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standard errors than do the corresponding
2SLS estimates).

The many-weak instruments problem
loses its sting when you use a single instru-
ment to estimate a single causal effect. Es-
timates of the quantity-quality trade-off us-
ing either a single dummy for multiple births
or a single dummy for same-sex sibships as
an instrument for family size are therefore
unlikely to be plagued by finite sample bias.
Such estimates appear in columns (2) and
(3) of Table 3.5. Finally, reduced-form estim-
ates are always worth a careful look, since
these are OLS estimates, unaffected by finite
sample bias. Reduced-form estimates that
are small and not significantly different from
zero provide a strong and unbiased hint that
the causal relationship of interest is weak or
nonexistent as well, at least in the data at
hand (multiple reduced-form coefficients are
also tested together using an F-test). We
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always tell our students: If you can’t see it in
the reduced form, it ain’t there.

1 Jay Mathews’ book, Work Hard. Be Nice, Algonquin
Books, 2009, details the history of KIPP. In 2012, Teach for
America was the largest single employer of graduating seni-
ors on 55 American college campuses, ranging from Arizona
State to Yale.

2 Martin Carnoy, Rebecca Jacobsen, Lawrence Mishel,
and Richard Rothstein, The Charter School Dust-Up: Ex-
amining Evidence on Student Achievement, Economic
Policy Institute Press, 2005, p. 58.

3 Joshua D. Angrist et al., “Inputs and Impacts in Charter
Schools: KIPP Lynn,” American Economic Review Papers
and Proceedings, vol. 100, no. 2, May 2010, pages 239–243,
and Joshua D. Angrist et al., “Who Benefits from KIPP?”
Journal of Policy Analysis and Management, vol. 31, no. 4,
Fall 2012, pages 837–860.

4 As noted in Chapter 1, attrition (missing data) is a con-
cern even in randomized trials. The key to the integrity of a
randomized design with missing data is an equal probability
that data are missing in treatment and control groups. In
the KIPP sample used to construct Table 3.1, winners and
losers are indeed about equally likely to have complete data.

5 Section 3.3 details the role of covariates in IV
estimation.
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6 This theorem comes from Guido W. Imbens and Joshua
D. Angrist, “Identification and Estimation of Local Average
Treatment Effects,” Econometrica, vol. 62, no. 2, March
1994, pages 467–475. The distinction between compliers,
always-takers, and never-takers is detailed in Joshua D. An-
grist, Guido W. Imbens, and Donald B. Rubin, “Identifica-
tion of Causal Effects Using Instrumental Variables,” Journ-
al of the American Statistical Association, vol. 91, no. 434,
June 1996, pages 444–455.

7 Simpson was acquitted of murder in a criminal trial but
was held responsible for the deaths in a civil trial. He later
authored a book titled If I Did It: Confessions of the Killer,
Beaufort Books, 2007. Our account of repeated police visits
to Simpson’s home is based on Sara Rimer, “The Simpson
Case: The Marriage; Handling of 1989 Wife-Beating Case
Was a ‘Terrible Joke,’ Prosecutor Says,” The New York
Times, June 18, 1994.

8 The original analysis of the MDVE appears in Lawrence
W. Sherman and Richard A. Berk, “The Specific Deterrent
Effects of Arrest for Domestic Assault,” American Sociolo-
gical Review, vol. 49, no. 2, April 1984, pages 261–272.

9 Our IV analysis of the MDVE is based on Joshua D. An-
grist, “Instrumental Variables Methods in Experimental
Criminological Research: What, Why and How,” Journal of
Experimental Criminology, vol. 2, no. 1, April 2006, pages
23–44.

10 This theoretical result originates with Howard S.
Bloom, “Accounting for No-Shows in Experimental Evalu-
ation Designs,” Evaluation Review, vol. 8, no. 2, April 1984,
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pages 225–246. The LATE interpretation of the Bloom res-
ult appears in Imbens and Angrist, “Identification and Es-
timation,” Econometrica, 1994. See also Section 4.4.3 in
Joshua D. Angrist and Jörn-Steffen Pischke, Mostly Harm-
less Econometrics: An Empiricist’s Companion, Princeton
University Press, 2009. An example from our field of labor
economics is the Job Training Partnership Act (JTPA). The
JTPA experiment randomly assigned the opportunity to
participate in a federally funded job-training program.
About 60% of those offered training received JTPA services,
but no controls got JTPA training. An IV analysis of the
JTPA using treatment assigned as an instrument for treat-
ment delivered captures the effect of training on trainees.
For details, see Larry L. Orr et al., Does Training for the
Disadvantaged Work? Evidence from the National JTPA
Study, Urban Institute Press, 1996.

11 See David Lam, “How the World Survived the Popula-
tion Bomb: Lessons from 50 Years of Extraordinary Demo-
graphic History,” Demography, vol. 48, no. 4, November
2011, pages 1231–1262, and Wolfgang Lutz, Warren Sander-
son, and Sergei Scherbov, “The End of World Population
Growth,” Nature, vol. 412, no. 6846, August 2, 2001, pages
543–545.

12 Just how much Indian living standards have risen is
debated. Still, scholars generally agree that conditions have
improved dramatically since 1970 (see, for example, Angus
Deaton, The Great Escape: Health, Wealth, and the Origins
of Inequality, Princeton University Press, 2013).
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13 Gary S. Becker and H. Gregg Lewis, “On the Interaction
between the Quantity and Quality of Children,” Journal of
Political Economy, vol. 81, no. 2, part 2, March/April 1973,
pages S279–288, and Gary S. Becker and Nigel Tomes,
“Child Endowments and the Quantity and Quality of Chil-
dren,” Journal of Political Economy, vol. 84, no. 4, part 2,
August 1976, pages S143–S162.

14 John Bongaarts, “The Impact of Population Policies:
Comment,” Population and Development Review, vol. 20,
no. 3, September 1994, pages 616–620.

15 You might think this is true only of societies with access
to modern contraceptive methods, such as the pill or the
penny (held between the knees as needed). But demograph-
ers have shown that even without access to modern contra-
ceptives, potential parents exert a remarkable degree of fer-
tility control. For example, in an extensive body of work,
Ansley Coale documented the dramatic decline in marital
fertility in nineteenth- and twentieth-century Europe (see
http://opr.princeton.edu/archive/pefp/). This pattern,
since repeated in most of the world, is called the demo-
graphic transition.

16 Mark R. Rosenzweig and Kenneth I. Wolpin, “Testing
the Quantity-Quality Fertility Model: The Use of Twins as a
Natural Experiment,” Econometrica, vol. 48, no. 1, January
1980, pages 227–240.

17 Joshua D. Angrist, Victor Lavy, and Analia Schlosser,
“Multiple Experiments for the Causal Link between the
Quantity and Quality of Children,” Journal of Labor Eco-
nomics, vol. 28, no. 4, October 2010, pages 773–824.
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18 In more recent samples, twins instruments are also
compromised by the proliferation of in vitro fertilization, a
treatment for infertility. Mothers who turn to in vitro fertil-
ization, which increases twin birth rates sharply, tend to be
older and more educated than other mothers.

19 Joshua D. Angrist and William Evans, “Children and
Their Parents’ Labor Supply: Evidence from Exogenous
Variation in Family Size,” American Economic Review, vol.
88, no. 3, June 1998, pages 450–477.

20 We’ve seen a version of IV with covariates already. The
KIPP offer effects reported in column (3) of Table 3.1 come
from regression models for the first stage and reduced form
that include covariates in the form of dummies for applica-
tion risk sets.

21 Alert readers will have noticed that the treatment vari-
able here, family size, is not a dummy variable like KIPP en-
rollment, but rather an ordered treatment that counts chil-
dren. You might wonder whether it’s OK to describe 2SLS
estimates of the effects of variables like family size as LATE.
Although the details differ, 2SLS estimates can still be said
to capture average causal effects on compliers in this con-
text. The extension of LATE to ordered treatments is de-
veloped in Joshua D. Angrist and Guido W. Imbens, “Two
Stage Least Squares Estimation of Average Causal Effects in
Models with Variable Treatment Intensity,” Journal of the
American Statistical Association, vol. 90, no. 430, June
1995, pages 431–442. Along the same lines, 2SLS easily ac-
commodates instruments that aren’t dummies. We’ll see an
example of this in Chapter 6.
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22 In addition to the male dummy, other covariates in-
clude indicators for census year, parents’ ethnicity, age,
missing month of birth, mother’s age, mother’s age at first
birth, and mother’s age at immigration (where relevant).
See the Empirical Notes section for details.

23 Specifically, the regression estimate of −.145 lies out-
side the multi-instrument 2SLS confidence interval of .237
± (2 × .128) = [−.02, .49]. You can, in some cases, have too
many instruments, especially if they have little explanatory
power in the first stage. The chapter appendix elaborates on
this point.

24 Philip G. Wright, The Tariff on Animal and Vegetable
Oils, Macmillan Company, 1928.

25 G. O. Virtue, “The Tariff on Animal and Vegetable Oils
by Philip G. Wright,” American Economic Review, vol. 19,
no. 1, March 1929, pages 152–156. The quote is from page
155.

26 James H. Stock and Francesco Trebbi, “Who Invented
Instrumental Variables Regression?” Journal of Economic
Perspectives, vol. 17, no. 3, Summer 2003, pages 177–194.

27 This quote and the one in the sketch are from from un-
published letters, uncovered by James H. Stock and Kerry
Clark. See “Philip Wright, the Identification Problem in
Econometrics, and Its Solution,” presented at the Tufts
University Department of Economics Special Event in hon-
or of Philip Green Wright, October 2011
(http://ase.tufts.edu/econ/news/documents/
wrightPhilipAndSewall.pdf), and Kerry Clark’s 2012
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Harvard senior thesis, “The Invention and Reinvention of
Instrumental Variables Regression.”

28 “Experience.” From In Reckless Ecstasy, Asgard Press,
1904, edited and with a foreword by Philip Green Wright.
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Chapter 4

Regression Discon-
tinuity Designs

YOUNG CAINE: Master, may we speak fur-
ther on the forces of destiny?

MASTER PO: Speak.

CAINE: As we stand with two roads before
us, how shall we know whether the left
road or the right road will lead us to our
destiny?



MASTER PO: You spoke of chance,
Grasshopper. As if such a thing were
certain to exist. In the matter you speak
of, destiny, there is no such thing as
chance.

Kung Fu, Season 3, Episode 62

Our Path

Human behavior is constrained by rules.

The State of California limits elementary
school class size to 32 students; 33 is one too
many. The Social Security Administration
won’t pay you a penny in retirement benefits
until you’ve reached age 62. Potential armed
forces recruits with test scores in the lower
deciles are ineligible for American military
service. Although many of these rules seem
arbitrary, with little grounding in science or
experience, we say: bring ’em on! For rules
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that constrain the role of chance in human
affairs often generate interesting experi-
ments. Masters of ’metrics exploit these ex-
periments with a tool called the regression
discontinuity (RD) design. RD doesn’t work
for all causal questions, but it works for
many. And when it does, the results have al-
most the same causal force as those from a
randomized trial.

4.1 Birthdays and Funerals

KATY: Is this really what you’re gonna do
for the rest of your life?

BOON: What do you mean?

KATY: I mean hanging around with a
bunch of animals getting drunk every
weekend.

BOON: No! After I graduate, I’m gonna
get drunk every night.
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Animal House, 1978 … of course

Your twenty-first birthday is an important
milestone. American over-21s can drink leg-
ally, “at last,” some would say. Of course,
those under age drink as well. As we learn
from the exploits of Boon and his fraternity
brothers, not all underage drinking is in
moderation. In an effort to address the social
and public health problems associated with
underage drinking, a group of American col-
lege presidents have lobbied states to return
the minimum legal drinking age (MLDA) to
the Vietnamera threshold of 18. The theory
behind this effort (known as the Amethyst
Initiative) is that legal drinking at age 18 dis-
courages binge drinking and promotes a cul-
ture of mature alcohol consumption. This
contrasts with the traditional view that the
age-21 MLDA, while a blunt and imperfect
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tool, reduces youth access to alcohol, thereby
preventing some harm.

Fortunately, the history of the MLDA gen-
erates two natural experiments that can be
used for a sober assessment of alcohol policy.
We discuss the first experiment in this

chapter and the second in the next.1 The first
MLDA experiment emerges from the fact
that a small change in age (measured in
months or even days) generates a big change
in legal access. The difference a day makes
can be seen in Figure 4.1, which plots the re-
lationship between birthdays and funerals.
This figure shows the number of deaths
among Americans aged 20–22 between 1997
and 2003. Deaths here are plotted by day,
relative to birthdays, which are labeled as
day 0. For example, someone who was born
on September 18, 1990, and died on
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September 19, 2012, is counted among
deaths of 22-year-olds occurring on day 1.

FIGURE 4.1
Birthdays and funerals

Mortality risk shoots up on and immedi-
ately following a twenty-first birthday, a fact
visible in the pronounced spike in daily
deaths on these days. This spike adds about
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100 deaths to a baseline level of about 150
per day. The age-21 spike doesn’t seem to be
a generic party-hardy birthday effect. If this
spike reflects birthday partying alone, we
should expect to see deaths shoot up after
the twentieth and twenty-second birthdays
as well, but that doesn’t happen. There’s
something special about the twenty-first
birthday. It remains to be seen, however,
whether the age-21 effect can be attributed to
the MLDA, and whether the elevated mortal-
ity risk seen in Figure 4.1 lasts long enough
to be worth worrying about.
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FIGURE 4.2
A sharp RD estimate of MLDA mortality

effects

Notes: This figure plots death rates from all causes
against age in months. The lines in the figure show fitted
values from a regression of death rates on an over-21
dummy and age in months (the vertical dashed line indic-
ates the minimum legal drinking age (MLDA) cutoff).

Sharp RD

The story linking the MLDA with a sharp and
sustained rise in death rates is told in Figure
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4.2. This figure plots death rates (measured
as deaths per 100,000 persons per year) by
month of age (defined as 30-day intervals),
centered around the twenty-first birthday.
The X-axis extends 2 years in either direc-
tion, and each dot in the figure is the death
rate in one monthly interval. Death rates
fluctuate from month to month, but few
rates to the left of the age-21 cutoff are above
95. At ages over 21, however, death rates
shift up, and few of those to the right of the
age-21 cutoff are below 95.

Happily, the odds a young person dies de-
crease with age, a fact that can be seen in the
downward-sloping lines fit to the death rates
plotted in Figure 4.2. But extrapolating the
trend line drawn to the left of the cutoff, we
might have expected an age-21 death rate of
about 92, while the trend line to the right of
21 starts markedly higher, at around 99. The
jump in trend lines at age 21 illustrates the
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subject of this chapter, regression discon-
tinuity designs (RD designs for short). RD is
based on the seemingly paradoxical idea that
rigid rules—which at first appear to reduce
or even eliminate the scope for random-
ness—create valuable experiments.

The causal question addressed by Figure
4.2 is the effect of legal access to alcohol on
death rates. The treatment variable in this
case can be written Da, where Da = 1 indic-
ates legal drinking and is 0 otherwise. Da is a
function of age, a: the MLDA transforms
21-year-olds from underage minors to legal
alcohol consumers. We capture this trans-
formation in mathematical notation by
writing

This representation highlights two signal fea-
tures of RD designs:
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▪ Treatment status is a deterministic
function of a, so that once we know
a, we know Da.

▪ Treatment status is a discontinuous
function of a, because no matter
how close a gets to the cutoff, Da re-
mains unchanged until the cutoff is
reached.

The variable that determines treatment, age
in this case, is called the running variable.
Running variables play a central role in the
RD story. In sharp RD designs, treatment
switches cleanly off or on as the running
variable passes a cutoff. The MLDA is a
sharp function of age, so an investigation of
MLDA effects on mortality is a sharp RD
study. The second half of the chapter dis-
cusses a second RD scenario, known as fuzzy
RD, in which the probability or intensity of
treatment jumps at a cutoff.
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Mortality clearly changes with the running
variable, a, for reasons unrelated to the
MLDA. Death rates from disease-related
causes like cancer (known to epidemiologists
as internal causes) are low but increasing for
those in their late teens and early 20s, while
deaths from external causes, primarily car
accidents, homicides, and suicides, fall. To
separate this trend variation from any pos-
sible MLDA effects, an RD analysis controls
for smooth variation in death rates generated
by a. RD gets its name from the practice of
using regression models to implement this
control.

A simple RD analysis of the MLDA estim-
ates causal effects using a regression like

where is the death rate in month a (again,
month is defined as a 30-day interval
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counting from the twenty-first birthday).
Equation (4.2) includes the treatment
dummy, Da, as well as a linear control for
age in months. Fitted values from equation
(4.2) produce the lines drawn in Figure 4.2.
The negative slope, captured by γ, reflects
smoothly declining death rates among young
people as they mature. The parameter ρ cap-
tures the jump in deaths at age 21. Regres-
sion (4.2) generates an estimate of ρ equal to
7.7. When cast against average death rates of
around 95, this estimate indicates a substan-
tial increase in risk at the MLDA cutoff.

Is this a credible estimate of the causal ef-
fect of the MLDA? Should we not control for
other things? The OVB formula tells us that
the difference between the estimate of ρ in
this short regression and the results any
longer regression might produce depend on
the correlation between variables added to
the long regression and Da. But equation
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(4.1) tells us that Da is determined solely by
a. Assuming that the effect of a on death
rates is captured by a linear function, we can
be sure that no OVB afflicts this short
regression.

The lack of OVB in equation (4.2) is the
payoff to inside information: although treat-
ment isn’t randomly assigned, we know
where it comes from. Specifically, treatment
is determined by the running variable—an
implication of the deterministic link noted
above. The question of causality therefore
turns on whether the relationship between
the running variable and outcomes has in-
deed been nailed by a regression with a lin-
ear control for age.

Although RD uses regression methods to
estimate causal effects, RD designs are best
seen as a distinct tool that differs import-
antly from the regression methods discussed
in Chapter 2. In Chapter 2, we compared
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treatment and control outcomes at particular
values of the control variables, in the hope
that treatment is as good as randomly as-
signed after conditioning on controls. Here,
there is no value of the running variable at
which we get to observe both treatment and
control observations. Whoa, Grasshopper!
Unlike the matching and regression
strategies discussed in Chapter 2, which are
based on treatment-control comparisons
conditional on covariate values, the validity
of RD turns on our willingness to extrapolate
across values of the running variable, at least
for values in the neighborhood of the cutoff
at which treatment switches on.

The local nature of such neighborly com-
parisons is apparent in Figure 4.2. The jump
in trend lines at the MLDA cutoff implicitly
compares death rates for people on either
side of—but close to—a twenty-first birthday.
In other words, the notional experiment here
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involves changes in access to alcohol for
young people, in a world where alcohol is
freely available to adults. The results from
this experiment, though relevant for contem-
porary discussions of alcohol policy, need
not tell us much about the consequences of
more dramatic policy changes, such as
Prohibition.

RD Specifics

RD tools aren’t guaranteed to produce reli-
able causal estimates. Figure 4.3 shows why
not. In panel A, the relationship between the
running variable (X) and the outcome (Y) is
linear, with a clear jump in E[Y |X] at the
cutoff value of one-half. Panel B looks simil-
ar, except that the relationship between aver-
age Y and X is nonlinear. Still, the jump at X
= .5 is plain to see. Panel C of Figure 4.3
highlights the challenge RD designers face.
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Here, the figure exhibits a baroque nonlinear
trend, with sharp turns to the left and right
of the cutoff, but no discontinuity. Estimates
constructed using a linear model like equa-
tion (4.2) mistake this nonlinearity for a
discontinuity.
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FIGURE 4.3
RD in action, three ways
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Notes: Panel A shows RD with a linear model for
E[Yi|Xi]; panel B adds some curvature. Panel C shows non-
linearity mistaken for a discontinuity. The vertical dashed
line indicates a hypothetical RD cutoff.

Two strategies reduce the likelihood of RD
mistakes, though neither provides perfect in-
surance. The first models nonlinearities dir-
ectly, while the second focuses solely on ob-
servations near the cutoff. We start with the
nonlinear modeling strategy, briefly taking
up the second approach at the end of this
section.

Nonlinearities in an RD framework are
typically modeled using polynomial func-
tions of the running variable. Ideally, the res-
ults that emerge from this approach are in-
sensitive to the degree of nonlinearity the
model allows. Sometimes, however, as in the
case of panel C of Figure 4.3, they are not.
The question of how much nonlinearity is
enough requires a judgment call. A risk here
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is that you’ll pick the model that produces
the results that seem most appealing, per-
haps favoring those that conform most
closely to your prejudices. RD practitioners
therefore owe their readers a report on how
their RD estimates change as the details of
the regression model used to construct them
change.

Figure 4.2 suggests the possibility of mild
curvature in the relationship between and
a, at least for the points to the right of the
cutoff. A simple extension that captures this
curvature uses quadratic instead of linear
control for the running variable. The RD
model with quadratic running variable con-
trol becomes
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where γ1a + γ2a2 is a quadratic function of
age, and the γs are parameters to be
estimated.

A related modification allows for different
running variable coefficients to the left and
right of the cutoff. This modification gener-
ates models that interact a with Da. To make
the model with interactions easier to inter-
pret, we center the running variable by sub-
tracting the cutoff, a0. Replacing a by a − a0

(here, a0 = 21), and adding an interaction
term, (a − a0)Da, the RD model becomes

Centering the running variable ensures that
ρ in equation (4.3) is still the jump in aver-
age outcomes at the cutoff (as can be seen by
setting a = a0 in the equation).

Why should the trend relationship
between age and death rates change at the
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cutoff? Data to the left of the cutoff reflect
the relationship between age and death rates
for a sample whose drinking behavior is re-
stricted by the MLDA. In this sample, we
might expect steadily declining death rates
as young people mature and take fewer risks.
After age 21, however, unrestricted access to
alcohol might change this process, perhaps
slowing a declining trend. On the other hand,
if the college presidents who back the
Amethyst Initiative are right, responsible
legal drinking accelerates the development of
mature behavior. The direction of such a
change in slopes is merely a hypothesis—the
main point is that equation (4.3) allows for
slope changes either way.

A subtle implication of the model with in-
teraction terms is that away from the a0

cutoff, the MLDA treatment effect is given by
ρ + δ(a − a0). This can be seen by subtract-
ing the regression line fit to observations
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where Da is switched off from the line fit to
observations where Da is switched on:

Estimates away from the cutoff constitute a
bold extrapolation, however, and should be
consumed with a slice of lime and a shaker of
salt. There is no data on counterfactual death
rates in a world where drinking at ages sub-
stantially older than 21 is forbidden. Like-
wise, far to the left of the cutoff, it’s hard to
say what death rates would be in a world
where drinking at very young ages is allowed.
By contrast, it seems reasonable to say that
those just under 21 provide a good counter-
factual comparison for those just over 21.
This leads us to see estimates of the para-
meter ρ (the causal effect right at the cutoff)
as most reliable, even when the model used
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for estimation implicitly tells us more than
that.

Nonlinear trends and changes in slope at
the cutoff can also be combined in a model
that looks like

In this setup, both the linear and quadratic
terms change as we cross the cutoff. As be-
fore, the jump in death rates at the MLDA
cutoff is captured by the MLDA treatment ef-
fect, ρ. The treatment effect away from the

cutoff is now ρ + δ1(a − a0) + δ2(a − a0)2,
though again the causal interpretation of this
quantity is more speculative than the causal
interpretation of ρ itself.

Figure 4.4 shows that the estimated trend
function generated by equation (4.4) has
some curvature, mildly concave to the left of
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age 21 and markedly convex thereafter. This
model generates a larger estimate of the
MLDA effect at the cutoff than does a linear
model, equal to about 9.5 deaths per
100,000. Figure 4.4 also shows the linear
trend line generated by equation (4.2). The
more elaborate model seems to give a better
fit than the simple model: Death rates jump
sharply at age 21, but then recover somewhat
in the first few months after a twenty-first
birthday. This echoes the spike in daily death
rates on or around the twenty-first birthday
seen in Figure 4.1. Unlike Boon and his fra-
ternity brothers, many newly legalized drink-
ers seem eventually to tire of getting trashed
every night. Specification (4.4) captures this
jump—and decline—nicely, though at the
cost of some technical fanciness.

Which model is better, fancy or simple?
There are no general rules here, and no sub-
stitute for a thoughtful look at the data.
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We’re especially fortunate when the results
are not highly sensitive to the details of our
modeling choices, as appears true in Figure
4.4. The simple RD model seems flexible
enough to capture effects right at the cutoff,
in this case around a twenty-first birthday.
The fancier version fits the spike in death
rates near twenty-first birthdays, while also
capturing the subsequent partial recovery in
death rates.

Effects at the cutoff need not be the most
important. Suppose we raise the drinking
age to 22. In a world where excess alcohol
deaths are due entirely to MLDA birthday
parties, such a change might extend some
lives by a year but otherwise have little effect.
The sustained increase in death rates appar-
ent in Figure 4.4 is therefore important,
since this suggests restricted alcohol access
has lasting benefits. We commented above
that evidence for effects away from the cutoff
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is more speculative than the evidence found
in a jump near the cutoff. On the other hand,
when the trend relationship between run-
ning variable and outcomes is approximately
linear, limited extrapolation seems justified.
The jump in death rates at the cutoff shows
that drinking behavior responds to alcohol
access in a manner that is reflected in death
rates, an important point of principle, while
the MLDA treatment effect extrapolated as
far out as age 23 still looks substantial and
seems believable, on the order of 5 extra
deaths per 100,000. This pattern highlights
the value of “visual RD,” that is, careful as-
sessment of plots like Figure 4.4.
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FIGURE 4.4
Quadratic control in an RD design

Notes: This figure plots death rates from all causes
against age in months. Dashed lines in the figure show fitted
values from a regression of death rates on an over-21
dummy and age in months. The solid lines plot fitted values
from a regression of mortality on an over-21 dummy and a
quadratic in age, interacted with the over-21 dummy (the
vertical dashed line indicates the minimum legal drinking
age [MLDA] cutoff).

How convincing is the argument that the
jump in Figure 4.4 is indeed due to drinking?
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Data on death rates by cause of death help us
make the case. Although alcohol is poison-
ous, few people die from alcohol poisoning
alone, and deaths from alcohol-related dis-
eases occur only at older ages. But alcohol is
closely tied to motor vehicle accidents
(MVA), the number-one killer of young
people. If drunk driving is the primary
alcohol-related cause of deaths, we should
see a large jump in motor vehicle fatalities
alongside little change in death rates due to
internal causes. Like the balancing tests re-
ported for the RAND HIE experiment in
Table 1.3 and for the KIPP offer instrument
in panel A of Table 3.1, zero effects on out-
comes that should be unchanged by treat-
ment raise our confidence in the causal ef-
fects we are after.

As a benchmark for results related to spe-
cific causes of death, the first row of Table
4.1 shows estimates for all deaths,
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constructed using both simple RD equation
(4.2) and fancy RD equation (4.4). These are
displayed in columns (1) and (2). The second
row of Table 4.1 reveals strong effects of legal
drinking on MVA fatalities, effects large
enough to account for most of the excess
deaths related to the MLDA. The estimates
here are largely insensitive to whether the
fancy or simple model is used to construct
them. Other causes of death we might expect
to see affected by drinking are suicide and
other external causes, which include acci-
dents other than car crashes. Indeed, estim-
ated effects on suicide and deaths from other
external causes (excluding homicide) also
show small but statistically significant in-
creases at the MLDA cutoff.

Importantly, the estimates reported in
columns (1) and (2) for deaths from all in-
ternal causes (these include deaths from can-
cer and other diseases) are small and and not
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significantly different from zero. As the last
row in the table shows, effects from direct al-
cohol poisoning also appear to be modest
and of roughly the same magnitude as those
from internal causes, though the estimated
jump in deaths from alcohol poisoning is sig-
nificantly different from zero. On balance,
therefore, Table 4.1 supports the MLDA
story, showing clear effects for causes most
likely attributable to alcohol but little evid-
ence of an increase due to internal causes.

Also in support of this conclusion, Figure
4.5 plots fitted values for MVA fatalities, con-
structed using the model that generates the
estimates in column (2) of Table 4.1. The fig-
ure shows a clear break at the MLDA cutoff,
with no evidence of potentially misleading
nonlinear trends. At the same time, there
isn’t much of a jump in deaths due to intern-
al causes, while the standard errors in Table
4.1 suggest that the small jump in internal
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deaths seen in the figure is likely due to
chance.
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TABLE 4.1
Sharp RD estimates of MLDA effects on

mortality

Notes: This table reports coefficients on an over-21
dummy from regressions of month-of-age-specific death
rates by cause on an over-21 dummy and linear or interac-
ted quadratic age controls. Standard errors are reported in
parentheses.
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In addition to straightforward regression
estimation, an approach that masters refer to
as parametric RD, a second RD strategy ex-
ploits the fact that the problem of distin-
guishing jumps from nonlinear trends grows
less vexing as we zero in on points close to
the cutoff. For the small set of points close to
the boundary, nonlinear trends need not
concern us at all. This suggests an approach
that compares averages in a narrow window
just to the left and just to the right of the
cutoff. A drawback here is that if the window
is very narrow, there are few observations
left, meaning the resulting estimates are
likely to be too imprecise to be useful. Still,
we should be able to trade the reduction in
bias near the boundary against the increased
variance suffered by throwing data away,
generating some kind of optimal window
size.
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FIGURE 4.5
RD estimates of MLDA effects on mortality

by cause of death

Notes: This figure plots death rates from motor vehicle
accidents and internal causes against age in months. Lines
in the figure plot fitted values from regressions of mortality
by cause on an over-21 dummy and a quadratic function of
age in months, interacted with the dummy (the vertical
dashed line indicates the minimum legal drinking age
[MLDA] cutoff).

The econometric procedure that makes
this trade-off is nonparametric RD.
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Nonparametric RD amounts to estimating
equation (4.2) in a narrow window around
the cutoff. That is, we estimate

The parameter b describes the width of the
window and is called a bandwidth. The res-
ults in Table 4.1 can be seen as nonparamet-
ric RD with a bandwidth equal to 2 years of
age for the estimates reported in columns (1)
and (2) and a bandwidth half as large (that
is, including only ages 20–21 instead of
19–22) for the estimates shown in columns
(3) and (4). The choice of the simple model
in equation (4.5) vs. the fancier equation
(4.4) should matter little when both are es-
timated in narrower age windows around the
cutoff. The results in Table 4.1 support this
conjecture, though there is some wobbliness

407/694

text/part0011.html#eq4-2
text/part0011.html#t4-1
text/part0011.html#eq4-5
text/part0011.html#eq4-4
text/part0011.html#eq4-4
text/part0011.html#t4-1


in the estimates across columns that we
might reasonably attribute to sampling vari-

ance.2

Simple enough! But how shall we pick the
bandwidth? On one hand, to obviate con-
cerns about polynomial choice, we’d like to
work with data close to the cutoff. On the
other hand, less data means less precision.
For starters, therefore, the bandwidth should
vary as a function of the sample size. The
more information available about outcomes
in the neighborhood of an RD cutoff, the
narrower we can set the bandwidth while
still hoping to generate estimates precise
enough to be useful. Theoretical econometri-
cians have proposed sophisticated strategies
for making such bias-variance trade-offs effi-
ciently, though here too, the bandwidth se-
lection algorithm is not completely data-de-
pendent and requires researchers to choose
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certain parameters.3 In practice, bandwidth
choice—like the choice of polynomial in
parametric models—requires a judgment
call. The goal here is not so much to find the
one perfect bandwidth as to show that the
findings generated by any particular choice
of bandwidth are not a fluke.
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In this spirit, the studies upon which our
investigation of the MLDA is based appear to
have been written in RD heaven (perhaps a
reward for their authors’ temperance). The
RD estimates generated by parametric mod-
els with alternative polynomial controls

410/694



come out similar to one another and close to
a corresponding set of nonparametric estim-
ates. These nonparametric estimates are
largely insensitive to the choice of bandwidth

over a wide range.4 This alignment of results
suggests the findings generated by an RD
analysis of the MLDA capture real causal ef-
fects. Some young people appear to pay the
ultimate price for the privilege of downing a
legal drink.

4.2 The Elite Illusion

KWAI CHANG CAINE: I seek not to know the
answers, but to understand the
questions.

Kung Fu, Season 1, Episode 14

The Boston and New York City public school
systems include a handful of selective exam
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schools. Unlike most other American public
schools, exam schools screen applicants on
the basis of a competitive admissions test.
Just as many American high school seniors
compete to enroll in the country’s most se-
lective colleges and universities, younger stu-
dents and their parents in a few cities aspire
to coveted seats at top exam schools. Fewer
than half of Boston’s exam school applicants
win a seat at the John D. O’Bryant School,
Boston Latin Academy, or the Boston Latin
School (BLS); only one-sixth of New York
applicants are offered a seat at one of the
three original exam schools in the Big Apple
(Stuyvesant, Bronx Science, and Brooklyn
Tech).

At first blush, the intense competition for
exam school seats is understandable. Many
exam school students go on to distinguished
careers in science, the arts, and politics. By
any measure, exam school students are well
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ahead of other public school students. It’s
easy to see why some parents would give a
kidney (perhaps a liver!) to place their chil-
dren in such schools. Economists and other
social scientists are also interested in the
consequences of the exam school treatment.
For one thing, exam schools bring high-abil-
ity students together. Surely that’s a good
thing: bright students learn as much from
their peers as from their teachers, or so we
say at highly selective institutions like MIT
and the London School of Economics.

The case for an exam school advantage is
easy to make, but it’s also clear that at least
some of the achievement difference associ-
ated with exam school attendance reflects
these schools’ selective admissions policies.
When schools admit only high achievers,
then the students who go there are necessar-
ily high achievers, regardless of whether the
school itself adds value. This sounds like a
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case of selection bias, and it is. Taking a cue
from the far-sighted Oregon Health Author-
ity and its health insurance lottery, we might
hope to convince Stuyvesant and Boston Lat-
in to admit students at random, instead of on
the basis of a test. We could then use the res-
ulting experimental data to learn whether ex-
am schools add value. Or could we? For if ex-
am schools were to admit students ran-
domly, then they wouldn’t be exam schools
after all.

If selective admissions are a necessary part
of what it means to be an exam school, how
can we hope to design an experiment that re-
veals exam school effectiveness? Necessity is
the mother of invention, as revered philo-
sophers Plato and Frank Zappa remind us.
The discrete nature of exam school admis-
sions policies creates a natural experiment.
Among applicants with scores close to ad-
missions cutoffs, whether an applicant falls
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to the right or left of the cutoff might be as
good as randomly assigned. In this case,
however, the experiment is subtle: rather
than a simple on-off switch, it’s the nature of
the exam school experience that changes dis-
continuously at the cutoff, since some admit-
ted students choose to go elsewhere while
many of those rejected at one exam school
end up at another. When discontinuities
change treatment probabilities or average
characteristics (treatment intensity, for
short), instead of flicking a simple on-off
switch, the resulting RD design is said to be
fuzzy.

Fuzzy RD

Just what is the exam school treatment? Fig-
ures 4.6–4.8, which focus on applicants to
BLS, help us craft an answer. BLS applicants,
like all who aspire to an exam school seat in
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Boston, take the Independent Schools En-
trance Exam (ISEE for short). The sample
used to construct these figures consists of
applicants with ISEE scores near the BLS en-
trance cutoff. The dots in the figures are av-
erages of the variable on the Y-axis calcu-
lated for applicants with ISEE scores in bins
one point wide, while the line through the
dots shows a fit obtained by smoothing these

data in a manner explained in a footnote.5

Figure 4.6 shows that most but not all quali-
fying applicants enroll at BLS.
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FIGURE 4.6
Enrollment at BLS

Notes: This figure plots enrollment rates at Boston Latin
School (BLS), conditional on admissions test scores, for BLS
applicants scoring near the BLS admissions cutoff. Solid
lines show fitted values from a local linear regression estim-
ated separately on either side of the cutoff (indicated by the
vertical dashed line).
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FIGURE 4.7
Enrollment at any Boston exam school

Notes: This figure plots enrollment rates at any Boston
exam school, conditional on admissions test scores, for Bo-
ston Latin School (BLS) applicants scoring near the BLS ad-
missions cutoff. Solid lines show fitted values from a local
linear regression, estimated separately on either side of the
cutoff (indicated by the vertical dashed line).

BLS is the most prestigious exam school in
Boston. Where do applicants who miss the
BLS cutoff go? Most go to Boston Latin
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Academy, a venerable institution that’s one
school down in the Boston exam school hier-
archy. This enrollment shift is documented
in Figure 4.7, which plots enrollment rates at
any Boston exam school around the BLS
cutoff. Figure 4.7 shows that most students
who miss the BLS cutoff indeed end up at
another exam school, so that the odds of en-
rolling at some exam school are virtually un-
changed at the BLS cutoff. It would seem,
therefore, that we have to settle for a
parochial-sounding experiment comparing
highly selective BLS to the somewhat less se-
lective Boston Latin Academy, instead of a
more interesting evaluation of the whole ex-
am school idea.
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FIGURE 4.8
Peer quality around the BLS cutoff

Notes: This figure plots average seventh-grade peer
quality for applicants to Boston Latin School (BLS), condi-
tional on admissions test scores, for BLS applicants scoring
near the admissions cutoff. Peer quality is measured by
seventh-grade schoolmates’ fourth-grade math scores. Solid
lines show fitted values from a local linear regression, es-
timated separately on either side of the cutoff (indicated by
the vertical dashed line).

Or do we? One of the most controversial
questions in education research is the nature
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of peer effects; that is, whether the ability of
your classmates has a causal effect on your
learning. If you’re lucky enough to attend
high school with other good students, this
may contribute to your success. On the other
hand, if you’re relegated to a school where
most students do poorly, this may hold you
back. Peer effects are important for policies
related to school assignment, that is, the
rules and regulations that determine where
children attend school. In many American
cities, for example, students attend schools
near their homes. Because poor, nonwhite,
and low-achieving students tend to live far
from well-to-do, high-achieving students in
mostly white neighborhoods, school assign-
ment by neighborhood may reduce poor
minority children’s chances to excel. Many
school districts therefore bus children to
schools far from where they live in an effort
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to increase the mixing of children from dif-
ferent backgrounds and races.

Exam schools induce a dramatic experi-
ment in peer quality. Specifically, applicants
who qualify for admission at one of Boston’s
exam schools attend school with much
higher-achieving peers than do applicants
who just miss the cut, even when the altern-
ative is another exam school. Figure 4.8 doc-
uments this for BLS applicants. Here, peer
achievement is measured by the math score
of applicants’ schoolmates on a test they took
in fourth grade (2 years before they applied
to exam schools). As in the charter school in-
vestigation discussed in Chapter 3, test
scores in this figure are measured in stand-
ard deviation units, where one standard de-
viation is written in Greek as 1σ. Successful
applicants to BLS study with much higher-
scoring schoolmates, enjoying a jump in peer
math achievement of .8σ, equivalent to the
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difference in average peer quality between
inner city Boston and its wealthy suburbs.
Such dramatic variation in treatment intens-
ity lies at the heart of any fuzzy RD research
design. The difference between fuzzy and
sharp designs is that, with fuzzy, applicants
who cross a threshold are exposed to a more
intense treatment, while in a sharp design
treatment switches cleanly on or off at the
cutoff.

Fuzzy RD Is IV

In a regression rite of passage, social scient-
ists around the world link student achieve-
ment to the average ability of their school-
mates. Such regressions reliably reveal a
strong association between the performance
of students and the achievement of their
peers. Among all Boston exam school applic-
ants, a regression of students’ seventh-grade
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math scores on the average fourth-grade
scores of their seventh-grade classmates gen-
erates a coefficient of about one-quarter.
This putative peer effect comes from the re-
gression model

where Yi is student i’s seventh-grade math
score, Xi is i’s fourth-grade math score, and

is the average fourth-grade math score of
i’s seventh-grade classmates (the subscript
“(i)” reminds us that student i is not included
when calculating the average achievement of
his or her peers). The estimated coefficient
on peer quality (θ1) is around .25, meaning
that a one standard deviation increase in the
ability of middle school peers, as measured
by their elementary school scores and con-
trolling for a student’s own elementary
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school performance, is associated with a .25σ
gain in middle school achievement.

Parents and teachers have a powerful intu-
ition that “peers matter,” so the strong posit-
ive association between the achievement of
students and their classmates rings true. But
this naive peer regression is unlikely to have
a causal interpretation for the simple reason
that students educated together tend to be
similar for many reasons. Your authors’ four
children, for example, precocious high-
achievers like their parents, have been fortu-
nate to attend schools attended by many
children from similar families. Because fam-
ily background is not held fixed in regres-
sions like equation (4.6), the observed asso-
ciation between students and their class-
mates undoubtedly reflects some of these
shared influences. To break the resulting
causal deadlock, we’d like to randomly
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assign students to a range of different peer
groups.

Exam schools to the rescue! Figure 4.8
documents the remarkable difference in peer
ability that BLS admission produces, with a
jump of four-fifths of a standard deviation in
peer quality at the BLS cutoff. The jump in
peer quality at exam school admissions
cutoffs arises—by design—from the mix of
students enrolled in selective schools. This is
just what the econometrician ordered by way
of an ideal peer experiment (this improve-
ment in peer quality also makes many par-
ents hope and dream of an exam school seat
for their children). Moreover, while peer
quality jumps at the cutoff, cross-cutoff com-
parisons of variables related to applicants’
own abilities, motivation, and family back-
ground—the sources of selection bias we
usually worry about—show no similar jumps.
For example, there’s no jump in applicants’
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own elementary school scores. Peers change
discontinuously at admissions cutoffs, but
exam school applicants’ own characteristics

do not.6

Hopes, dreams, and the results from our
naive peer regression (equation (4.6)) not-
withstanding, the exam school experiment
casts doubt on the notion of a causal peer ef-
fect on the achievement of Boston exam
school applicants. The seeds of doubt are
planted by Figure 4.9, which plots seventh-
and eighth-grade math scores (on tests taken
after 1 or 2 years of middle school) against
ISEE scores (the exam school running vari-
able) for applicants scoring near the BLS
cutoff. Admitted applicants are exposed to a
much stronger peer group, but this exposure
generates no parallel jump in applicants’
middle school achievement.
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As in equation (4.2), the size of the jump
in Figure 4.9 can be estimated by fitting an
equation like

Here, Di is a dummy variable indicating ap-
plicants who qualify, while Ri is the running
variable that determines qualification. In a
sample of seventh-grade applicants to BLS,
where Yi is a middle school math score as in
the figures, this regression produces an es-
timate of −.02 with a standard error of .10, a
statistical zero in our book.
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FIGURE 4.9
Math scores around the BLS cutoff

Notes: This figure plots seventh- and eighth-grade math
scores for applicants to the Boston Latin School (BLS), con-
ditional on admissions test scores, for BLS applicants scor-
ing near the admissions cutoff. Solid lines show fitted values
from a local linear regression, estimated separately on
either side of the cutoff (indicated by the vertical dashed
line).

How should we interpret this estimate of
ρ? Through the lens of the corresponding
first stage, of course! Equation (4.7) is the
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reduced form for a 2SLS setup where the en-
dogenous variable is average peer quality, .
The first-stage equation that goes with this
reduced form is

where the parameter ? captures the jump in
mean peer quality induced by an exam
school offer. This is the jump shown in Fig-
ure 4.8, a precisely estimated .80σ.

The last piece of our 2SLS setup is the
causal relationship of interest, the 2SLS
second stage. In this case, the second stage
captures the effect of peer quality on sev-
enth- and eighth-grade math scores. As al-
ways, the second stage includes the same
control variables as appear in the first stage.
This leads to a second-stage equation that
can be written
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where λ is the causal effect of peer quality,
and the variable is the first-stage fitted
value produced by estimating equation (4.8).

Note that equation (4.9) inherits a covari-
ate from the first stage and reduced form,
the running variable, Ri. On the other hand,
the jump dummy, Di, is excluded from the
second stage, since this is the instrument
that makes the 2SLS engine run. Substant-
ively, we’ve assumed that in the neighbor-
hood of admissions cutoffs, after adjusting
for running variable effects with a linear con-
trol, exam school qualification has no direct
effect on test scores, but rather influences
achievement, if at all, solely through peer
quality. This assumption is the all-important
IV exclusion restriction in this context.

The 2SLS estimate of λ in equation (4.9) is

−.023 with a standard error of .132.7 Since
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the reduced-form estimate is close to and not
significantly different from zero, so is the
corresponding 2SLS estimate. This estimate
is also far from the estimate of .25σ gener-
ated by OLS estimation of the naive peer ef-
fects regression, equation (4.6). On the other
hand, who’s to say that the only thing that
matters about an exam school education is
peer quality? The exclusion restriction re-
quires us to commit to a specific causal chan-
nel. But the assumed channel need not be
the only one that matters in practice.

A distinctive feature of the exam school
environment besides peer achievement is ra-
cial composition. In Boston’s mostly minor-
ity public schools, exam schools offer the op-
portunity to go to school with a more diverse
population, where diversity means more
white classmates. The court-mandated dis-
mantling of segregated American school sys-
tems was motivated by an effort to improve
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educational outcomes. In 1954, the U.S. Su-
preme Court famously declared: “Separate
educational facilities are inherently un-
equal,” laying the framework for court-
ordered busing to increase racial balance in
public schools. Does increasing racial bal-
ance indeed boost achievement? Exam
schools are relevant to the debate over racial
integration because exam school admission
sharply increases exposure to white peers. At
the same time, we know that if we replace
peer quality, , with peer proportion white,
this too will produce a zero second-stage
coefficient, a consequence of the fact that the
underlying reduced form is unchanged by
the choice of causal channel.

Exam schools might differ in other ways as
well, perhaps attracting better teachers or of-
fering more Advanced Placement (college-
level) courses than nonselective public
schools. Importantly, however, school
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resources and other features of the school
environment that might change at exam
school admissions cutoffs seem likely to be
beneficial. This in turn suggests that any
omitted variables bias associated with 2SLS
estimates of exam school peer effects is pos-
itive. This claim echoes that made in Chapter
2 regarding the likely direction of OVB in our
evaluation of selective colleges. Because
omitted variables with positive effects are
probably positively correlated with exam
school offers, the 2SLS estimate using exam
school qualification as an instrument for
peer quality is, if anything, too big relative to
the pure peer effect we’re after. All the more
surprising, then, that this estimate turns out
to be zero.

As with any IV story, fuzzy RD requires
tough judgments about the causal channels
through which instruments affect outcomes.
In practice, multiple channels might mediate
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causal effects, in which case we explore al-
ternatives. Likewise, the channels we meas-
ure readily need not be the only ones that
matter. The causal journey never ends; new
questions emerge continuously. But the fuzzy
framework that uses RD to generate instru-
ments is no less useful for all that.

MASTER STEVEFU: Summarize RD for me,
Grasshopper.

GRASSHOPPER: The RD design exploits ab-
rupt changes in treatment status that
arise when treatment is determined by a
cutoff.

MASTER STEVEFU: Is RD as good as a ran-
domized trial?

GRASSHOPPER: RD requires us to know
the relationship between the running
variable and potential outcomes in the
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absence of treatment. We must control
for this relationship when using discon-
tinuities to identify causal effects. Ran-
domized trials require no such control.

MASTER STEVEFU: How can you know that
your control strategy is adequate?

GRASSHOPPER: One can’t be sure, Master.
But our confidence in causal conclusions
increases when RD estimates remain
similar as we change details of the RD
model.

MASTER STEVEFU: And sharp versus fuzzy?

GRASSHOPPER: Sharp is when treatment
itself switches on or off at a cutoff. Fuzzy
is when the probability or intensity of
treatment jumps. In fuzzy designs, a
dummy for clearing the cutoff becomes
an instrument; the fuzzy design is ana-
lyzed by 2SLS.

MASTER STEVEFU: You approach the
threshold for mastery, Grasshopper.
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Masters of ’Metrics: Donald
Campbell

The RD story was first told by psychologists
Donald L. Thistlethwaite and Donald T.
Campbell, who used RD in 1960 to evaluate
the impact of National Merit Scholarship

awards on awardees’ careers and attitudes.8

As many of our readers will know, the Amer-
ican National Merit Scholarship program is a
multi-round process, at the end of which a
few thousand high-achieving high school
seniors are awarded a college scholarship.
Selection is based on applicants’ scores on
the PSAT and SAT tests, the college entrance
exams taken by most U.S. college applicants.

Successful candidates in the National Mer-
it competition have PSAT scores above a
cutoff (and have their PSAT scores validated
by doing well on the SAT, taken later).
Among these, a few are awarded

437/694

text/part0011.html#ch-fn8


scholarships by the National Merit screening
committee, while the rest get a Certificate of
Merit. Students receiving this certificate,
known as National Merit finalists, are justifi-
ably pleased: in recognition of this accom-
plishment, their names are distributed to
colleges, universities, and to other scholar-
ship sponsors. Colleges with many National
Merit finalists in their incoming classes also
like to advertise this fact. Thistlethwaite and
Campbell asked whether recognition as a Na-
tional Merit finalist has any lasting con-
sequences for those so recognized.

In earlier work relying on matching meth-
ods (of the sort described in Chapter 2),
Thistlethwaite estimated that applicants who
were awarded a Certificate of Merit were 4
percentage points more likely to plan to be-
come college teachers or researchers than

they otherwise would have been.9 But an RD
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design exploiting discontinuities at the PSAT
cutoff for a Certificate of Merit generated a
statistically insignificant estimate of only
about 2 points for this outcome. The plot
that goes with this finding is reproduced
here as Figure 4.10. Public recognition by it-
self seems to have little effect on career
choice or plans for graduate study.
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FIGURE 4.10
Thistlethwaite and Campbell’s Visual RD

Notes: This figure plots PSAT test takers’ plans for
graduate study (line I–I′) and a measure of test takers’ ca-
reer plans (line J–J′) against the running variable that de-
termines National Merit recognition.

Donald Campbell is remembered not just
for inventing RD but also for his 1963 essay,
“Experimental and Quasi-Experimental
Designs for Research on Teaching,” written
with Julian C. Stanley and later released in
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book form. The Campbell and Stanley essay
was a pioneering exploration of the ’metrics
methods discussed in this and the following
chapter of our book. A subsequent update
written with Thomas D. Cook remains an im-

portant reference to this day.10

1 Our MLDA discussion draws on Christopher Carpenter
and Carlos Dobkin, “The Effect of Alcohol Consumption on
Mortality: Regression Discontinuity Evidence from the Min-
imum Drinking Age,” American Economic Journal—Ap-
plied Economics, vol. 1, no. 1, January 2009, pages
164–182, and “The Minimum Legal Drinking Age and
Public Health,” Journal of Economic Perspectives, vol. 25,
no. 2, Spring 2011, pages 133–156.

2 Nonparametric RD mavens typically estimate models
like equation (4.2) using weighted least squares. This is a
procedure that puts the most weight on observations right
at the cutoff and less weight on observations farther away.
The weighting function used for this purpose is called a ker-
nel. The estimates in Table 4.1 implicitly use a uniform ker-
nel; that is, they weight observations inside the bandwidth
equally.

3 See Guido W. Imbens and Karthik Kalyanaraman, “Op-
timal Bandwidth Choice for the Regression Discontinuity
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Estimator,” Review of Economic Studies, vol. 79, no. 3, July
2012, pages 933–959.

4 A comparison of parametric and nonparametric estim-
ates appears in Tables 4 and 5 of Carpenter and Dobkin,
“The Effect of Alcohol Comsumption,” American Economic
Journal: Applied Economics, 2009. Sensitivity to choice of
bandwidth is explored in their online appendix (DOI:
10.1257/app.1.1 .164). The 2009 study analyzes mortality by
exact day of birth, while here we work with monthly data.

5 The variable that determines admissions in these figures
is a weighted average of each applicant’s ISEE score and
GPA, but we refer to this running variable as the ISEE score
for short. The dots here come from a smoothing method
known as local linear regression, which works by fitting re-
gressions to small samples defined by a bandwidth around
each point. Smoothed values are the fitted values generated
by this procedure. For details, see the study on which our
discussion here is based: Atila Abdulkadiroglu, Joshua D.
Angrist, and Parag Pathak, “The Elite Illusion: Achievement
Effects at Boston and New York Exam Schools,” Economet-
rica, vol. 81, no. 1, January 2014, pages 137–196.

6 This is documented in Abdulkadiroglu et al., “The Elite
Illusion,” Econometrica, 2014.

7 This standard error is clustered by applicant. As ex-
plained in the appendix to Chapter 5, we use clustered
standard errors to adjust for the fact that the data contain
correlated observations (in this case, the seventh- and
eighth-grade test scores for each BLS applicant are
correlated).
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8 Donald L. Thistlethwaite and Donald T. Campbell,
“Regression-Discontinuity Analysis: An Alternative to the
Ex Post Facto Experiment,” Journal of Educational Psycho-
logy, vol. 51, no. 6, December 1960, pages 309–317.

9 Donald L. Thistlethwaite, “Effects of Social Recognition
upon the Educational Motivation of Talented Youths,”
Journal of Educational Psychology, vol. 50, no. 3, 1959,
pages 111–116.

10 Donald T. Campbell and Julian C. Stanley, “Experi-
mental and Quasi-Experimental Designs for Research on
Teaching,” Chapter 5 in Nathaniel L. Gage (ed.), Handbook
of Research on Teaching, Rand McNally, 1963; and Donald
T. Campbell and Thomas D. Cook, Quasi-Experimentation:
Design and Analysis Issues for Field Settings, Houghton
Mifflin, 1979.
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Chapter 5

Differences-in-
Differences

MASTER KAN: If while building a house, a
carpenter strikes a nail and it proves
faulty by bending, does the carpenter
lose faith in all nails and stop building?
So it is with empirical work.

Kung Fu, Season 1, Episode 7



Our Path

Credible instrumental variables and dra-

matic policy discontinuities can be hard to
find; you’ll need other ’metrics tools in your
kit too. The differences-in-differences (DD)
method recognizes that in the absence of
random assignment, treatment and control
groups are likely to differ for many reasons.
Sometimes, however, treatment and control
outcomes move in parallel in the absence of
treatment. When they do, the divergence of a
post-treatment path from the trend estab-
lished by a comparison group may signal a
treatment effect. We demonstrate DD with a
study of the effects of monetary policy on
bank failures during the Great Depression.
We also revisit the MLDA.

5.1 A Mississippi Experiment
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On the eve of the largest economic downturn
in American history—the Great Depres-
sion—economic spirits ran high in the halls
of high finance. Caldwell and Company’s slo-
gan “We Bank on the South” reflected the
confidence of a regional financial empire.
Based in Nashville, Caldwell ran the largest
Southern banking chain in the 1920s, and
owned many nonbanking businesses as well.
Rogers Caldwell, known as the J. P. Morgan
of the South, lived large on an estate that
housed his stable of prize-winning thorough-
breds. Alas, in November of 1930, misman-
agement and fallout from the stock market
crash of October 1929 brought the Caldwell
empire down. Within days, Caldwell’s col-
lapse felled closely tied banking networks in
Tennessee, Arkansas, Illinois, and North
Carolina. The Caldwell crisis was a harbinger
of a surge in bank failures across the country.
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Banking is a business built on confidence
and trust. Banks lend to businesses and
property owners in the expectation that most
loans will be paid off when they come due.
Depositors trust they’ll be able to withdraw
their funds on demand. This confidence not-
withstanding, banks hold less cash than
needed to pay all depositors, because most
deposits are out on loan. The resulting ma-
turity mismatch poses no problem in normal
times, when few depositors make withdraw-
als on any given day.

If confidence falters, the banking system
breaks down. In the 1930s, when your bank
went out of business, your savings very likely
disappeared with it. Even if your bank’s
mortgage and loan portfolios looked safe,
you wouldn’t have wanted to be the last de-
positor to try to get your money out. Once
other depositors are seen to withdraw in
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panic, you’d do well to panic too. That’s how
a bank run starts.

Caldwell’s demise shook depositor confid-
ence throughout the American South and
precipitated a run on Mississippi banks in
December 1930. Deposits in Mississippi fell
slowly at first, but on December 19, the
floodgates opened when savers panicked. On
that day, the Mississippi state Banking De-
partment closed three banks. Two more
banks ceased operations the day after, and
another 29 folded in the next six months.
The regional panic of 1930 was one of many
more to come. In 1933, the year Depression-
era bank failures peaked, more than 4,000
banks failed nationwide.

Economists have long sought to under-
stand whether and how monetary policy con-
tributed to the Great Depression, and wheth-
er more aggressive monetary intervention
might have stemmed the financial collapse
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and economic free fall seen in those dark
days. Depression-era lessons may help us
understand the present. Although financial
markets today are more sophisticated, the
pillars of finance remain much as they were:
banks borrow and lend, typically at different
maturities, and bet on being able to raise the
cash (known in banking jargon as “liquidity”)
needed to cover liabilities as they come due.

We’re unlucky enough to live in economic-
ally interesting times. The year 2008 saw the
U.S. financial system shaken by a collapse in
the market for mortgage-backed securities,
followed by a European sovereign debt crisis
beginning in late 2009. Carmen Reinhart
and Kenneth Rogoff have recently chronicled
financial crises since the fourteenth century,
arguing they share a common anatomy. The
apparent similarity of such episodes makes
you wonder whether they can be avoided, or
at least whether their effects can be
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mitigated. In their masterful 1963 monetary
history of the United States, Milton Fried-
man and Anna Schwartz convinced many
economists that a proper understanding of
the effects of monetary policy is the key to

answering this question.1

One Mississippi, Two Mississippi

Policymakers facing a bank run can open the
flow of credit or turn off the tap. Friedman
and Schwartz argued that the Federal
Reserve (America’s central bank) foolishly
restricted credit as the Great Depression un-
folded. Easy money might have allowed
banks to meet increasingly urgent withdraw-
al demands, staving off depositor panic. By
lending to troubled banks freely, the central
bank has the power to stem a liquidity crisis
and obviate the need for a bailout in the first
place.
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But who’s to say when a crisis is merely a
crisis of confidence? Some crises are real.
Bank balance sheets may be so sickened by
bad debts that no amount of temporary li-
quidity support will cure ’em. After all, banks
don’t lose their liquidity by random assign-
ment. Rather, bank managers make loans
that either fail or are fruitful. Injecting cent-
ral bank funds into bad banks may throw
good money after bad. Better in such cases to
declare bankruptcy and hope for an orderly
distribution of any remaining assets.

Support for bad banks also raises the
specter of what economists call moral haz-
ard. If bankers know that the central bank
will lend cheaply when liquidity runs dry,
they needn’t take care to avoid crises in the
first place. In 1873, The Economist’s editor-
in-chief Walter Bagehot described the
danger this way:

451/694



If the banks are bad, they will certainly
continue bad and will probably become
worse if the Government sustains and
encourages them. The cardinal maxim
is, that any aid to a present bad Bank is
the surest mode of preventing the estab-
lishment of a future good Bank.2

Bagehot was a professed Social Darwinist,
believing that evolutionary principles ap-
plied in social affairs just as in biology.
Which policy stance is more likely to speed a
happy ending to an economic downturn, li-
quidity backstopping or survival of banking’s
fittest? As always, masters of ’metrics would
like to settle this question with a randomized
trial. We have a grant proposal to fund such
a bank liquidity experiment under review;
we’ll surely blog the results if it comes
through. In the meantime, we must learn
about the effects of monetary policy from the
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history of banking crises and policy re-
sponses to them.

Fortunately for this research agenda, the
U.S. Federal Reserve System is organized in-
to 12 districts, each run by a regional Federal
Reserve Bank. Depression-era heads of the
regional Feds had considerable policy inde-
pendence. The Atlanta Fed, running the
Sixth District, favored lending to troubled
banks. By contrast, the St. Louis Fed ran the
Eighth District according to a philosophy
known as the Real Bills Doctrine, which
holds that the central bank should restrict
credit in a recession. Especially happily for
research on monetary policy, the border
between the Sixth and Eighth Districts runs
east-west smack through the middle of the
state of Mississippi (District borders were
determined by population size in 1913, at the
birth of the Federal Reserve System). This
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border defines a within-state natural experi-
ment from which we can profit.

Masters Gary Richardson and William
Troost analyzed Mississippi’s monetary two-

step.3 As we might expect from their differ-
ing approaches to monetary policy, the At-
lanta and St. Louis Feds reacted very differ-
ently to the Caldwell crisis. Within 4 weeks
of Caldwell’s collapse, the Atlanta Fed had
increased bank lending by about 40% in the
Sixth District. In the same period, bank lend-
ing by the St. Louis Fed in the Eighth District
fell almost 10%.

The Richardson and Troost policy experi-
ment imagines the Eighth District as a con-
trol group, where policy was to do little or
even restrict lending, while the Sixth District
is a treatment group, where policy was to in-
crease lending. A first-line outcome is the
number of banks still operating in each
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District on July 1, 1931, about 8 months after
the beginning of the crisis. On that day, 132
banks were open in the Eighth District and
121 were open in the Sixth District, a deficit
of 11 banks in the Sixth District. This sug-
gests easy money was counterproductive.
But look again: the Sixth and Eighth Dis-
tricts were similar but not identical. We see
this in the fact that the number of banks op-
erating in the two districts differed markedly
across districts on July 1, 1930, well before
the Caldwell crisis, with 135 banks open in
the Sixth District and 165 banks open in the
Eighth. To adjust for this difference across
districts in the pre-treatment period, we ana-
lyze the Mississippi experiment using a tool
called differences-in-differences, or DD for
short.

Parallel Worlds
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Let Ydt denote the number of banks open in
District d in year t, where the subscript d
tells us whether we’re looking at data from
the Sixth or Eighth District and the subscript
t tells us whether we’re looking at data from
1930 (before the Caldwell crisis) or 1931
(after). The DD estimate (δDD) of the effect of
easy money in the Sixth District is

Instead of comparing the number of banks
open in the Sixth and Eighth Districts after
Caldwell, DD contrasts the change in the
number of banks operating in the two
districts.

Comparing changes instead of levels ad-
justs for the fact that in the pre-treatment
period, the Eighth District had more banks
open than the Sixth. To see this, note that we
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can produce the same DD bottom line this
way:

This version of the DD calculation subtracts
the pre-treatment difference between the
Sixth and Eighth Districts from the post-
treatment difference, thereby adjusting for
the fact that the two districts weren’t the
same initially. DD estimates suggest that
lending to troubled banks kept many of them
open. Specifically, the Atlanta Fed appears to
have saved 19 banks—more than 10% of
those operating in Mississippi’s Sixth District
in 1930.

DD logic is depicted in Figure 5.1, which
plots the number of banks in the Sixth and
Eighth Districts in 1930 and 1931, with data
from the two periods connected by solid
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lines. Figure 5.1 highlights the fact that while
banks failed in both Federal Reserve Dis-
tricts, they did so much more sharply in the
Eighth.

FIGURE 5.1
Bank failures in the Sixth and Eighth Federal

Reserve Districts

Notes: This figure shows the number of banks in opera-
tion in Mississippi in the Sixth and Eighth Federal Reserve
Districts in 1930 and 1931. The dashed line depicts the
counterfactual evolution of the number of banks in the Sixth
District if the same number of banks had failed in that dis-
trict in this period as did in the Eighth.
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The DD tool amounts to a comparison of
slopes or trends across districts. The dotted
line in Figure 5.1 is the counterfactual out-
come that lies at the heart of the DD research
design: this line tells us what would have
happened in the Sixth District had
everything evolved as it did in the Eighth.
The fact that the solid line for the Sixth Dis-
trict declines much more gradually than this
counterfactual line is evidence for the effect-
iveness of easy money. The 19 bank failures
uncovered by our DD calculation is the dif-
ference between what really happened and
what would have happened had bank activity
in the two districts unfolded in parallel.

The DD counterfactual comes from a
strong but easily stated assumption: com-
mon trends. In the Mississippi experiment,
DD presumes that, absent any policy differ-
ences, the Eighth District trend is what we
should have expected to see in the Sixth.
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Although strong, the common trends as-
sumption seems like a reasonable starting
point, one that takes account of pretreatment
differences in levels. With more data, the as-
sumption can also be probed, tested, and
relaxed.

FIGURE 5.2
Trends in bank failures in the Sixth and

Eighth Federal Reserve Districts

Note: This figure shows the number of banks in opera-
tion in Mississippi in the Sixth and Eighth Federal Reserve
Districts between 1929 and 1934.
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Figure 5.2 provides evidence on the com-
mon trends assumption for Mississippi’s
Federal Reserve Districts. The evidence
comes in the form of a longer time series on
bank activity. Before 1931, the Great Depres-
sion had not yet hit Mississippi hard. Re-
gional Fed policies in the two districts were
also similar in this more relaxed period. The
fact that bank failures moved almost in par-
allel in the two districts between 1929 and
1930, with the number of banks declining
slightly in both districts, is therefore consist-
ent with the common trends hypothesis for
untreated periods. Figure 5.3 adds the Sixth
District counterfactual implied by extrapol-
ating Eighth District trends to the Sixth Dis-
trict for years after 1930. The gap between
actual and counterfactual Sixth District
banking activity changed little through 1934.
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FIGURE 5.3
Trends in bank failures in the Sixth and

Eighth Federal Reserve Districts, and the
Sixth District’s DD counterfactual

Notes: This figure adds DD counterfactual outcomes to
the banking data plotted in Figure 5.2. The dashed line de-
picts the counterfactual evolution of the number of banks in
the Sixth District if the same number of banks had failed in
that district after 1930 as did in the Eighth.

As in Figure 5.1, the relatively steep fall-off
in bank activity in the Eighth District after
the Caldwell collapse emerges clearly in
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Figures 5.2 and 5.3. But these figures docu-
ment something further. Beginning in July
1931, the St. Louis Fed abandoned tight
money and started lending to troubled banks
freely. In other words, after 1931, Federal
Reserve policy in the two districts was again
similar, with both regional Feds willing to
provide liquidity with a free hand. Moreover,
while the Depression was far from over in
1932, the Caldwell crisis had petered out and
withdrawals had returned to pre-crisis levels.
Given the two regional Feds’ common readi-
ness to lend as the need arose, trends in bank
activity should again have been common
after 1931. The 1931–1934 data line up well
with this hypothesis.

Just DDo It: A Depression Regression

The simplest DD calculation involves only
four numbers, as in equations (5.1) and (5.2).
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In practice, however, the DD recipe is best
cooked with regression models fit to samples
of more than four data points, such as the 12
points plotted in Figure 5.2. In addition to
allowing for more than two periods, regres-
sion DD neatly incorporates data on more
than two cross-sectional units, as we’ll see in
a multistate analysis of the MLDA in Section
5.2. Equally important, regression DD facilit-
ates statistical inference, often a tricky mat-
ter in a DD setup (for details, see the ap-
pendix to this chapter).

The regression DD recipe associated with
Figure 5.2 has three ingredients:

(i) A dummy for the treatment district,
written TREATd, where the sub-
script d reminds us that this varies
across districts; TREATd controls
for fixed differences between the
units being compared.
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(ii) A dummy for post-treatment peri-
ods, written POSTt, where the sub-
script t reminds us that this varies
over time; POSTt controls for the
fact that conditions change over
time for everyone, whether treated
or not.

(iii) The interaction term, TREATd ×
POSTt, generated by multiplying
these two dummies; the coefficient
on this term is the DD causal effect.

We think of the Caldwell-era experimental
treatment as provision of easy credit in the
face of a liquidity crisis, so TREATd equals
one for data points from the Sixth District
and zero otherwise. The bank failure rate
slowed after 1931 as the Caldwell crisis sub-
sided. In the 1930s, however, there were no
zombie banks: dead banks were gone for
good. The Caldwell-era failures resulted in
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fewer banks open in the years 1932–1934 as
well, even though the St. Louis Fed had by
then begun to lend freely. We therefore code
POSTt to indicate all the observations from
1931 onward. Finally, the interaction term,
TREATd × POSTt, indicates observations in
the Sixth District in the post-treatment peri-
od. More precisely, TREATd × POSTt indic-
ates observations from the Sixth District in
periods when the Atlanta Fed’s response to
Caldwell mattered for the number of active
banks.

Regression DD for the Mississippi experi-
ment puts these pieces together by
estimating

in a sample of size 12. This sample is con-
structed by stacking observations from both
districts and all available years (6 years for
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each district). The coefficient on the interac-
tion term, δrDD, is the causal effect of in-
terest. With only two periods, as in Figure
5.1, estimates of δDD and δrDD coincide (a
consequence of the properties of dummy
variable regression outlined in the appendix
to Chapter 2). With more than two periods,
as in Figure 5.2, estimates based on equation
(5.3) should be more precise and provide a
more reliable picture of policy effects than

the simple four-number DD recipe.4

Fitting equation (5.3) to the 12 observa-
tions plotted in Figure 5.2 generates the fol-
lowing estimates (with standard errors
shown in parentheses):

These results suggest that roughly 21 banks
were kept alive by Sixth District lending.

467/694

text/part0012.html#f5-1
text/part0012.html#f5-1
text/part0009.html
text/part0012.html#f5-2
text/part0012.html#eq5-3
text/part0012.html#eq5-3
text/part0012.html#ch-fn4
text/part0012.html#eq5-3
text/part0012.html#f5-2


This estimate is close to the estimate of 19
banks saved using the four-number DD re-
cipe. The standard error for the estimated
δrDD is about 11, so 21 is a marginally signi-
ficant result, the best we can hope for with
such a small sample.

Let’s Get Real
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The Atlanta Fed very likely saved many Sixth
District banks from failure. But banks are
not valued for their own sakes. Did the At-
lanta Fed’s policy of easy money support real
economic activity, that is, non-bank busi-
nesses and jobs? Statistics on business activ-
ity within states are scarce for this period.
Still, the few numbers available suggest the
Atlanta Fed’s bank liquidity backstopping
generated real economic benefits. This is
documented in Table 5.1, which lists the in-
gredients for a simple DD analysis of Federal
Reserve liquidity effects on the number of
active wholesalers and their sales.
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TABLE 5.1
Wholesale firm failures and sales in 1929

and 1933

Notes: This table presents a DD analysis of Federal
Reserve liquidity effects on the number of wholesale firms
and the dollar value of their sales, paralleling the DD ana-
lysis of liquidity effects on bank activity in Figure 5.1.

DD estimates for Mississippi wholesalers
parallel those for Mississippi banks. Between
1929 and 1933, the number of wholesale
firms and their sales fell in both the Sixth
and Eighth Districts, with a much sharper
drop in the Eighth District, where more

470/694

text/part0012.html#f5-1


banks failed. In the 1920s and 1930s, whole-
salers relied heavily on bank credit to finance
inventories. The estimates in Table 5.1 sug-
gest that the reduction in bank credit in the
Eighth District in the wake of Caldwell
brought wholesale business activity down as
well, with a likely ripple effect throughout
the local economy. Sixth District wholesalers
were more likely to have been spared this
fate. Cooked with only a four-number DD re-
cipe, however, the evidence for a liquidity
treatment effect in Table 5.1 is weaker than
that produced by the larger sample for bank
activity.

The Caldwell experiment offers a hard-
won lesson in how to nip a banking crisis in
the bud. Perhaps the governor of the St.
Louis Fed, seeing a more modest collapse in
the Sixth District than in the Eighth, had ab-
sorbed the Caldwell lesson by the time he re-
versed course in 1931. But the palliative
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power of monetary policy in a financial crisis
was understood by national authorities only
much later. In their memoirs, Milton Fried-
man and his wife Rose famously recounted:

Instead of using its powers to offset the
Depression, [the Federal Reserve Board
in Washington, D.C.] presided over a de-
cline in the quantity of money by one-
third from 1929 to 1933. If it had oper-
ated as its founders intended, it would
have prevented that decline and, indeed,
converted it into the rise that was called
for to accommodate the normal growth
in the economy.5

Which isn’t to say that the problem of finan-
cial crisis management has since been
nailed. Today’s complex financial markets
run off the rails for many reasons, not all of
which can be contained by the Fed and its
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printing presses. That hard lesson is being
learned by the monetary authorities of our
day.

5.2 Drink, Drank, …

SHEN: Are you willing to die to find the
truth?

PO: You bet I am! … Although, I’d prefer
not to.

Kung Fu Panda 2

With the repeal of federal alcohol Prohibi-
tion in 1933, U.S. states were free to regulate
alcohol. Most instituted an MLDA of 21, but
Kansas, New York, and North Carolina,
among others, allowed drinking at 18. Fol-
lowing the twenty-sixth amendment to the
constitution in 1971, which lowered the vot-
ing age to 18 in response to agitation sparked
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by the Vietnam War, many states reduced
the MLDA. But not all: Arkansas, California,
and Pennsylvania are among the states that
held the line at 21. In 1984, the National
Minimum Drinking Age Act punished youth-
ful intemperance by withholding federal aid
for highway construction from states with an
age-18 MLDA. By 1988, all 50 states and the
District of Columbia had opted for an MLDA
of 21, though some had taken the federal
highway hint more quickly than others.

As with much American policymaking, the
interaction of federal and state law produces
a colorful and oft-changing quilt of legal
standards. This policy variation is a boon to
masters of ’metrics: variation in state MLDA
laws is easily exploited in a DD framework.
In efforts to uncover effects of alcohol policy,
this framework provides an alternative to the

RD approach detailed in Chapter 4.6
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Patterns from Patchwork

Alabama lowered its MLDA to 19 in 1975, but
alphabetically and geographically proximate
Arkansas has had an MLDA of 21 since Pro-
hibition’s repeal. Did Alabama’s indulgence
of its youthful drinkers cost some of them
their lives? We tackle this question by fitting
a regression DD model to data on the death
rates of 18–20-year-olds from 1970 to 1983.
The dependent variable is denoted Yst, for
death rates in state s and year t. With a
sample including only Alabama and Arkan-
sas, the regression DD model for Yst takes
the form

where TREATs is a dummy variable indicat-
ing Alabama, POSTt is a dummy indicating
years from 1975 onward, and the interaction
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term TREATs × POSTt indicates Alabama ob-
servations from low-drinking-age years. The
coefficient δrDD captures the effect of an
age-19 MLDA on death rates.

Equation (5.4) parallels the regression DD
model for Mississippi’s two Federal Reserve
Districts. But why look only at Alabama and
Arkansas? There’s more than one MLDA ex-
periment in the legislative record. For ex-
ample, Tennessee’s MLDA fell to 18 in 1971,
then rose to 19 in 1979. A complicating but
manageable consequence of differences in
the timing of MLDA reductions in Alabama
and Tennessee is the absence of a common
post-treatment period. When combining
multiple MLDA experiments in a DD frame-
work, we swap the single POSTt dummy for a
set of dummies indicating each year in the
sample, with one omitted as a reference
group. The coefficients on these dummies,
known as time effects, capture temporal
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changes in death rates that are common to

all states.7

Our multi-MLDA regression DD proced-
ure should also reflect the fact that there are
many states driving causal comparisons. In-
stead of controlling only for the difference
between, say, the Sixth and Eighth Federal
Reserve Districts as in the Mississippi exper-
iment of Section 5.1, or the difference
between Alabama and Arkansas in the ex-
ample above, the multistate setup controls
for the differing death rates in each of many
states. This is accomplished by introducing
state effects, a set of dummies for every state
in the sample, except for one, which is omit-
ted as a reference group. A regression DD
analysis of data from Alabama, Arkansas,
and Tennessee, for example, includes two
state effects. State effects replace the single
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TREATs dummy included in a two-state (or
two-group) analysis.

A final complication in this scenario is the
absence of a common treatment variable that
discretely switches off and on. The MLDA
runs from age 18 to age 21, generating treat-
ment effects for legal drinking at ages 18, 19,
or 20. Masters of ’metrics simplify such
things by reducing them to a single measure
of exposure to the policy of interest, in this
case, access to alcohol. Our simplification
strategy replaces TREATd × POSTt with a
variable we’ll call LEGALst. This variable
measures the proportion of 18–20-year-olds
allowed to drink in state s and year t. In
some states, no one under 21 is allowed to
drink, while in states with an age-19 MLDA,
roughly two-thirds of 18–20-year-olds can
drink, and in states with an age-18 MLDA, all
18–20-year-olds can drink. Our definition of
LEGALst also captures variation due to
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within-year timing. For example, Alabama’s
age-19 MLDA came into effect in July 1975.
LEGALAL,1975 is therefore scaled to reflect
the fact that Alabama’s 19–20-year-olds
were free to drink for only half that year.

The multistate regression DD model looks
like

Don’t let the big sums in this equation scare
you. This notation describes models with
many dummy variables compactly, just as in
the models with college selectivity group
dummies in Chapter 2. Here every state but
one (the reference state) gets its own dummy
variable, indexed by the subscript k for state
k. The index s keeps track of the state sup-
plying the observations. The kth state
dummy, STATEks equals one when an
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observation is from state k, meaning s = k,
and is zero otherwise. Observations from
California, for example, have STATECA, s

switched on, and all other state dummies
switched off.

The state effects, βk, are the coefficients on
the state dummies. For example, the Califor-
nia state effect, βCA is the coefficient on
STATECA,s. Every state except the reference
state, the one omitted when constructing
state dummies, has a state effect in equation
(5.5). Because there are so many of these, we
use summation notation, to
save writing them all out. The time effects,
γt, are similarly coefficients on the year dum-
mies, YEARjt. These switch on when obser-
vations in the data come from year j, that is,
when t = j. We therefore also call them year
effects. The 1975 year effect, γ1975, is the coef-
ficient on YEAR1975, t. Here, too, every year
in the sample except the reference year has a
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year effect, so we use summation notation to

write these out compactly.8

Our multistate MLDA analysis uses a data
set with 14 years and 51 states (including the
District of Columbia), for a total of 714 ob-
servations. This data structure is called a
state-year panel. The state effects in equa-
tion (5.5) control for fixed differences
between states (for example, fatal car acci-
dents are more frequent, on average, in rural
states with high average travel speeds). The
time (year) effects in this equation control
for trends in death rates that are common to
all states (due, for example, to national
trends in drinking or vehicle safety). Equa-
tion (5.5) attributes changes in mortality
within states to changes in LEGALst. As we’ll
see shortly, this causal attribution turns on a
common trends assumption, just as in our
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analysis of Caldwell-induced bank failures in
the previous section.

Estimates of δrDD in equation (5.5) suggest
that legal alcohol access caused about 11 ad-
ditional deaths per 100,000 18–20-year-
olds, of which seven or eight deaths were the
result of motor vehicle accidents. These res-
ults, reported in the first column of Table
5.2, are somewhat larger than but still
broadly consistent with the RD estimates re-
ported in Table 4.1 in Chapter 4. The MVA
estimates in Table 5.2 are also reasonably
precise, with standard errors of about 2.5.
Importantly, as with the RD estimates, this
regression DD model generates little evid-
ence of an effect of legal drinking on deaths
from internal causes. The regression DD
evidence for an effect on suicide is weaker
than the corresponding RD evidence in Table
4.1. At the same time, both strategies suggest
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any increase in numbers of suicides is smal-
ler than for MVA deaths.

TABLE 5.2
Regression DD estimates of MLDA effects on

death rates

Notes: This table reports regression DD estimates of
minimum legal drinking age (MLDA) effects on the death
rates (per 100,000) of 18–20-year-olds. The table shows
coefficients on the proportion of legal drinkers by state and
year from models controlling for state and year effects. The
models used to construct the estimates in columns (2) and
(4) include state-specific linear time trends. Columns (3)
and (4) show weighted least squares estimates, weighting by
state population. The sample size is 714. Standard errors are
reported in parentheses.
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Probing DD Assumptions

Samples that include many states and years
allow us to relax the common trends as-
sumption, that is, to introduce a degree of
nonparallel evolution in outcomes between
states in the absence of a treatment effect. A
regression DD model with controls for state-
specific trends looks like

This model presumes that in the absence of a
treatment effect, death rates in state k devi-
ate from common year effects by following
the linear trend captured by the coefficient
θk.

Heretofore and hitherto we’ve been sayin’
that DD is all about common trends. How
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can it be, then, that we’re now entertaining
models like equation (5.6), which relax the
key common trends assumption? To see how
such models work, consider a sample of two
states: The first, Allatsea, reduced the MLDA
to 18 in 1975, while neighboring Alabaster
held the line at 21. As a baseline, Figure 5.4
sketches the common trends story. Deaths
per 100,000 move in parallel until 1975
(most things got worse in the 1970s, so we
show death rates increasing). Death rates
also jump above trend in Allatsea in 1975,
when that state lowered its MLDA. Given the
parallelism and the timing, it seems fair to
blame Allatsea’s lower MLDA for this jump.

Figure 5.5 sketches a scenario with a
steeper trend in Allatsea than in Alabaster.
As with the data plotted in the previous fig-
ure, simple regression DD estimation in this
case generates estimates implicating the
MLDA (the post-minus-pre contrast in
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Allatsea is larger than the post-minus-pre
contrast in Alabaster). In this case, however,
the resulting DD estimate is spurious: the
difference in state trends predates Allatsea’s
MLDA liberalization and must therefore be
unrelated to it.

Luckily, such differences in trend can be
captured by the state-specific trend paramet-
ers, θk, in equation (5.6). In models that con-
trol for state-specific trends, evidence for
MLDA effects comes from sharp deviations
from otherwise smooth trends, even where
the trends are not common. Figure 5.6 shows
how regression DD captures treatment ef-
fects in the face of uncommon trends. Death
rates in Allatsea increase more steeply than
in Alabaster throughout the sample period.
But the Allatsea increase is especially steep
from 1974 to 1975, when Allatsea lowered its
MLDA. The coefficient on LEGALst in equa-
tion (5.6) picks this up, while the model

486/694

text/part0012.html#eq5-6
text/part0012.html#f5-6
text/part0012.html#eq5-6
text/part0012.html#eq5-6


allows for the fact that death rates in differ-
ent states were on different trajectories from
the get-go.

FIGURE 5.4
An MLDA effect in states with parallel trends
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FIGURE 5.5
A spurious MLDA effect in states where

trends are not parallel
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FIGURE 5.6
A real MLDA effect, visible even though

trends are not parallel

Models with state-specific linear trends
provide an important check on the causal in-
terpretation of any set of regression DD es-
timates using multiperiod data. In practice,
however, empirical reality may be consider-
ably mushier and harder to interpret than
the stylized examples laid out in Figures
5.4–5.6. The findings generated by a
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regression model like equation (5.6) are of-
ten imprecise. The sharper the deviation
from trend induced by a causal effect, the
more likely we are to be able to uncover it.
On the other hand, if treatment effects
emerge only gradually, estimates of equa-
tions like (5.6) may fail to distinguish treat-
ment effects from differential trends, with
the end result being an imprecise and there-
fore inconclusive set of findings.

Happily for a coherent causal DD analysis
of MLDA effects, introduction of state-spe-
cific trends has little effect on our regression
DD estimates. This can be seen in column (2)
of Table 5.2, which reports regression DD es-
timates of MLDA effects from the model de-
scribed by equation (5.6). The addition of
trends increases standard errors a little, but
the loss of precision here is modest. The
findings in column (2) support a causal
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interpretation of the more precise MLDA ef-
fects reported in column (1) of the table.

State policymaking is a messy business,
with frequent changes on many fronts. DD
estimates of MLDA effects, with or without
state-specific trends, may be biased by con-
temporaneous policy changes in other areas.
An important consideration in research on
alcohol, for example, is the price of a drink.
Taxes are the most powerful tool the govern-
ment uses to affect the price of your favorite
beverage. Many states levy a heavy tax on
beer, which we measure in dollars per gallon
of alcohol content. Beer taxes range from
just pennies per gallon to more than a dollar
per gallon in some Southern states. Beer
taxes change from time to time, mostly in-
creasing, much to the dismay of the Beer In-
stitute (with a tax rate of 2 cents per gallon
since 1935, Wyoming is beer bliss). It stands
to reason that states might raise tax rates at
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the same time that they increase their
MLDA, perhaps as a part of a broader effort
to reduce drinking. If so, we should control
for time-varying state tax rates when estim-
ating MLDA effects.

Regression DD models that include con-
trols for state beer taxes generate MLDA es-
timates similar to those without such con-
trols. This can be seen in Table 5.3, which re-
ports both the estimated coefficients on
LEGALst and the estimated coefficients on
state beer taxes in models for the four death
rates examined in Table 5.2. Columns (1) and
(2) of Table 5.3 show beer tax and MLDA ef-
fects estimated using a single regression
without controls for state-specific trends,
while those in columns (3) and (4) come
from another regression including controls
for state-specific trends. Beer tax effects are
estimated less precisely than MLDA effects,
most likely because beer taxes change less
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often than the MLDA. The beer tax estimates
from models that include state trends are es-
pecially noisy. Still, the Beer Institute will be
pleased to learn that these results don’t
speak in favor of further beer tax increases.
We’re likewise pleased to know that our
MLDA estimates are robust to the inclusion
of a beer tax control; we’ll share a beer to
celebrate!
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TABLE 5.3
Regression DD estimates of MLDA effects

controlling for beer taxes

Notes: This table reports regression DD estimates of
minimum legal drinking age (MLDA) effects on the death
rates (per 100,000) of 18–20-year-olds, controlling for state
beer taxes. The table shows coefficients on the proportion of
legal drinkers by state and year and the beer tax by state
and year, from models controlling for state and year effects.
The fraction legal and beer tax variables are included in a
single regression model, estimated without trends to pro-
duce the estimates in columns (1) and (2) and estimated
with state-specific linear trends to produce the estimates in
columns (3) and (4). The sample size is 700. Standard er-
rors are reported in parentheses.
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What Are You Weighting For?

The estimates of equations (5.5) and (5.6) in
columns (1) and (2) of Table 5.2 give all ob-
servations equal weight, as if data from each
state were equally valuable. States are not
created equal, however, in at least one im-
portant respect: some, like Texas and Cali-
fornia, are bigger than most countries, while
others, like Vermont and Wyoming, have
populations smaller than those of many
American cities. We may prefer estimates
that reflect this fact by giving more populous
states more weight. The regression proced-
ure that does this is called weighted least
squares (WLS). The standard OLS estimator
fits a line by minimizing the sample average
of squared residuals, with each squared re-

sidual getting equal weight in the sum.9 Just
as the name suggests, WLS weights each
term in the residual sum of squares by
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population size or some other researcher-
chosen weight.

Population weighting has two con-
sequences. First, as noted in Chapter 2, re-
gression models of treatment effects capture
a weighted average of effects for the groups
or cells represented in our data. In a state-
year panel, these groups are states. OLS es-
timates of models for state-year panels pro-
duce estimates of average causal effects that
ignore population size, so the resulting es-
timates are averages over states, not over
people. Population weighting generates a
people-weighted average, in which causal ef-
fects for states like Texas get more weight
than those for states like Vermont. People-
weighting may sound appealing, but it need
not be. The typical citizen is more likely to
live in Texas than Vermont, but changes in
the Vermont MLDA provide variation that
may be just as useful as changes in Texas.
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You should hope, therefore, that regression
estimates from your state-year panel are not
highly sensitive to weighting.

Population weighting may also increase
the precision of regression estimates. With
far fewer drivers in Vermont than in Texas,
MVA death rates in Vermont are likely to be
more variable from year to year than those in
Texas (this reflects the sampling variation
discussed in the appendix to Chapter 1). In a
statistical sense, the data from Texas are
more reliable and therefore, perhaps, worthy
of higher weight. Here too, however, the case
for weighting is not open and shut. As a mat-
ter of econometric theory, masters of ’met-
rics can claim that weighted estimates are
more precise than unweighted estimates only
when a number of restrictive technical con-

ditions are met.10 Once again, the best scen-
ario is a set of findings (that is, estimates and
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standard errors) that are reasonably insens-
itive to weighting.

Columns (3) and (4) in Table 5.2 report
WLS estimates of equations (5.5) and (5.6).
These correspond to the OLS estimates
shown in columns (1) and (2) of the table,
but the WLS estimator weights each observa-
tion by state population aged 18–20. Happily
for our understanding of MLDA effects,
weighting here matters little. It would seem
once again that teetotaling masters have
been rewarded for their temperance.

MASTER STEVEFU: Wrap it up for me,
Grasshopper.

GRASSHOPPER: Treatment and control
groups may differ in the absence of
treatment, yet move in parallel. This

498/694

text/part0012.html#t5-2
text/part0012.html#eq5-5
text/part0012.html#eq5-6


pattern opens the door to DD estimation
of causal effects.

MASTER STEVEFU: Why is DD better than
simple two-group comparisons?

GRASSHOPPER: Comparing changes in-
stead of levels, we eliminate fixed differ-
ences between groups that might other-
wise generate omitted variables bias.

MASTER STEVEFU: How is DD executed
with multiple comparison groups and
multiple years?

GRASSHOPPER: I have seen the power and
flexibility of regression DD, Master. In a
state-year panel, for example, with time-
varying state policies like the MLDA, we
need only control for state and year
effects.

MASTER STEVEFU: On what does the fate of
DD estimates turn?
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GRASSHOPPER: Parallel trends, the claim
that in the absence of treatment, treat-
ment and control group outcomes would
indeed move in parallel. DD lives and
dies by this. Though we can allow for
state-specific linear trends when a panel
is long enough, masters hope for results
that are unchanged by their inclusion.

Masters of ’Metrics: John Snow

British physician John Snow was one of the
fathers of modern epidemiology, the study of
how illness moves through a population.
Studying an outbreak of cholera in London
in 1849, Snow challenged the conventional
wisdom that the disease is caused by bad air.
He thought cholera might be caused by bad
water instead, an idea he first laid out in his
1849 essay On the Mode of Communication
of Cholera.
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A further cholera outbreak in 1853 and
1854 claimed many lives in the London
neighborhood of Soho. Snow attributed the
Soho epidemic to water from a pump on
Broad Street. Not afraid to give a natural ex-
periment a helping hand, he convinced the
local parish council to remove the handle of
the Broad Street pump. Cholera deaths in
Soho subsided soon after, though Snow
noted that death rates in his Broad Street
treatment zone were already declining, and
that this made the data from his natural ex-
periment hard to interpret. DD was as fickle
at birth as it is today.

Snow was a meticulous data grubber, set-
ting a standard we still aspire to meet. In an
1855 revision of his essay, Snow reported
death rates by district and water source for
various parts of London. He noted that many
of the high-death-rate districts in South Lon-
don were supplied by one of two companies,
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the Southwark and Vauxhall Company or the
Lambeth Company. In 1849, both companies
drew water from the contaminated Thames
in central London. Starting in 1852, however,
the Lambeth Company drew from the river
at Thames Ditton, an uncontaminated water
source upstream. Snow showed that between
1849 and 1854 deaths from cholera fell in the
area supplied by the Lambeth Company but
rose in that supplied by the Southwark and
Vauxhall Company. Our Figure 5.7 repro-

duces Table 12 from Snow’s 1855 essay.11

This table contains the ingredients for
Snow’s two-period DD analysis of death
rates by water source.

Appendix: Standard Errors for
Regression DD
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Regression DD is a special case of estimation
with panel data. A state-year panel consists
of repeated observations on states over time.
The repetitive structure of such data sets
raises special statistical problems. Economic
data of this sort typically exhibit a property
called serial correlation (that’s serial as in
“murder,” not “breakfast”). Serially correl-
ated data are persistent, meaning the values
of variables for nearby periods are likely to
be similar.

We expect serial correlation in time series
data like annual unemployment rates. When
a state’s unemployment rate is higher than
average in one year, it’s likely to be higher
than average in the next. Because panel data
sets combine repeated observations for indi-
vidual states (in our MLDA example) or re-
gions (in our Mississippi experiment), such
data are often serially correlated. When the
dependent variable in a regression is serially
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correlated, the residuals from any regression
model explaining this variable are often seri-
ally correlated as well. A combination of seri-
ally correlated residuals and serially correl-
ated regressors changes the formula required
to calculate standard errors.

If we ignore serial correlation and use the
simple standard error formula, equation
(2.15), the resulting statistical conclusions
are likely to be misleading. The penalty for
ignoring serial correlation is that you exag-
gerate the precision of regression estimates.
This is because the sampling theory for re-
gression inference laid out in the appendix to
Chapter 1 presumes the data at hand come
from random samples. Serial correlation is a
deviation from randomness, with the im-
portant consequence that each new observa-
tion in a serially correlated time series con-
tains less information than would be the case
if the sample were random.
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FIGURE 5.7
John Snow’s DD recipe
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Just as the robust standard errors dis-
cussed in the appendix to Chapter 1 correct
for heteroskedasticity, there’s a modified
standard error formula that answers the seri-
al correlation challenge. The appropriate for-
mula in this case is known as a clustered
standard error. The formula for clustered
standard errors is more complicated than the
formula for robust standard errors given in
equation (2.16); we won’t ask you to learn it
for the test. The important thing is that clus-
tering (an option in most regression soft-
ware) allows for correlated data within
researcher-defined clusters. In contrast with
the assumption that all data are randomly
sampled, the formula for clustered standard
errors requires only that clusters be sampled
randomly, with no random sampling as-
sumption invoked for what’s inside them.

In the MLDA example discussed in this
chapter, states are clusters. Often, it’s
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individual people who appear in our samples
repeatedly. Participants in the RAND HIE
contributed up to five annual observations
on their health-care use in the sample used
to construct Table 1.4, and children appear
in two separate grades in the sample used to
estimate the peer effects model, equation
(4.9). In these examples, we adjust for the
fact that repeated outcomes for the same
person tend to be correlated by clustering on
individual.

In the Mississippi experiment, clusters are
Federal Reserve Districts. There are only two
of these, an important caution. Serial correl-
ation might not be a problem in the Missis-
sippi experiment, but if it is, we’ll need more
data before we can say anything conclusive
about the effects of liquidity on bank surviv-
al. Once you start clustering, the formal the-
ory behind statistical inference presumes you
have many clusters instead of (or in addition
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to) many individual observations within
clusters. In practice, “many” might be only a
few dozen, as
with American states. That’s probably OK,
but a pair or a handful of clusters may not be

enough.12

Clustered standard errors are appropriate
for a wide variety of settings, not only for
panel data. In principle, clustering solves any
sort of dependence problem in your data
(though you might not like the large stand-
ard errors that result). For example, data
from achievement tests taken by schoolchil-
dren are likely to be correlated within
classrooms if children in the same classes
share a teacher and have similar family back-
grounds. When reporting estimates of the ef-
fects of educational interventions like peer
effects in equation (4.6) or the effects of
private universities in Chapter 2, masters
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cluster their standard errors on class, school,
or university.

1 Carmen Reinhart and Kenneth Rogoff, This Time Is Dif-
ferent: Eight Centuries of Financial Folly, Princeton
University Press, 2009; and Milton Friedman and Anna
Schwartz, A Monetary History of the United States,
1867–1960, Princeton University Press, 1963.

2 From Chapter IV.4 in Walter Bagehot, Lombard Street:
A Description of the Money Market, Henry S. King and Co.,
1873.

3 Gary Richardson and William Troost, “Monetary Inter-
vention Mitigated Banking Panics during the Great
Depression: Quasi-Experimental Evidence from a Federal
Reserve District Border, 1929–1933,” Journal of Political
Economy, vol. 117, no. 6, December 2009, pages 1031–1073.
Numbers in this section are our tabulations from the
Richardson and Troost data.

4 In fact, as we explain in the chapter appendix, it’s hard
to gauge the precision of a DD estimate constructed from
only two cross-sectional units and two periods.

5 Milton Friedman and Rose D. Friedman, Two Lucky
People: Memoirs, University of Chicago Press, 1998, page
233.

6 Carpenter and Dobkin, “The Minimum Legal Drinking
Age,” Journal of Economic Perspectives, 2011, analyzed the
MLDA in a DD framework.
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7 We include one less time effect than there are years in
our data. Time effects measure temporal changes relative to
a starting point, usually the first year in the sample.

8 Here’s another way to see how the notation works. Con-
sider an observation for s = NY. Then we have

so the sum of all possible state dummies picks up the New
York state effect, βNY, when observations are from New
York. All the other dummies in the sum are zero. Likewise,
if t = 1980, then we have

so the sum picks up the 1980 year effect when observations
are from 1980.

9 Regression residuals, defined in the appendix to
Chapter 2, are the differences between the fitted values gen-
erated by the model we’re estimating and the dependent
variable in this model.

10 One requirement is that the underlying CEF be linear.
The appendix to Chapter 2 notes, however, that many re-
gression models are only linear approximations to the CEF.

11 John Snow, On the Mode of Communication of Chol-
era, John Churchill, second edition, 1855.

12 For a more detailed discussion of this point, see our
book, Mostly Harmless Econometrics, Princeton University
Press, 2009. In an analysis of hundreds of counties on
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either side of Federal Reserve District borders, Andrew Jalil
adds clusters to the Mississippi experiment. See “Monetary
Intervention Really Did Mitigate Banking Panics during the
Great Depression: Evidence along the Atlanta Federal
Reserve District Border,” Journal of Economic History, vol.
74, no. 1, March 2014, pages 259–273.

512/694



Chapter 6

The Wages of
Schooling

Legend tells of a legendary econometri-
cian whose econometric skills were the
stuff of legend.

Masters at Work



This chapter completes our exploration of

paths from cause to effect with a multifa-
ceted investigation of the causal effect of
schooling on wages. Good questions are the
foundation of our work, and the question of
whether increased education really increases
earnings is a classic. Masters have tackled
the schooling question with all tools in hand,
except, ironically, random assignment. The
answers they’ve fashioned are no less inter-
esting for being incomplete.

6.1 Schooling, Experience, and
Earnings

British World War II veteran Bertie Gladwin
dropped out of secondary school at age 14,
though he still found work as a radio com-
munication engineer in the British intelli-
gence service. In his sixties, Bertie returned
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to school, completing a BA in psychology.
Later, Bertie earned a BSc in microbiology,
before embarking on a Master’s degree in
military intelligence, completed at the age of
91. Bertie has since been considering study

for a PhD.1

It’s never too late to learn something new.
Unlike Bertie Gladwin, however, most stu-
dents complete their studies before estab-
lishing a career. College students spend years
buried in books and tuition bills, while many
of their high school friends who didn’t go to
college may have started work and gained a
measure of financial independence. In return
for the time-consuming toil and expense of
college, college graduates hope to be rewar-
ded with higher earnings down the road.
Hopes and dreams are one thing; life follows
many paths. Are the forgone earnings and
tuition costs associated with a college degree
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worthwhile? That’s a million dollar question,
and our interest in it is more than personal.
Taxpayers subsidize college attendance for
students around the world, a policy motiv-
ated in part by the view that college is the
key to economic success.

Economists call the causal effect of educa-
tion on earnings the returns to schooling.
This term invokes the notion that schooling
is an investment in human capital, with a
monetary payoff similar to that of a financial
investment. Generations of masters have es-
timated the economic returns to schooling.
Their efforts illustrate four of our tools: re-
gression, DD, IV, and RD.

’Metrics master Jacob Mincer pioneered
efforts to quantify the return to schooling us-

ing regression.2 Working with U.S. census
data, Mincer ran regressions like
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where ln Yi is the log annual earnings of man
i, Si is his schooling (measured as years spent
studying), and Xi is his years of work experi-
ence. Mincer defined the latter as age minus
years of schooling minus 6, a calculation that
counts all years since graduation as years of
work. Masters call Xi calculated in this way
potential experience. It’s customary to con-
trol for a quadratic function of potential ex-
perience to allow for the fact that, although
earnings increase with experience, they do so
at a decreasing rate, eventually flattening out
in middle age.

Mincer’s estimates of equation (6.1) for a
sample of about 31,000 nonfarm white men
in the 1960 Census look like
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With no controls, ρ = .07. This estimate
comes from a model built with logs, so ρ =
.07 implies average earnings rise by about
7% with each additional year of schooling
(the appendix to Chapter 2 discusses regres-
sion models with logs on the left-hand side).
With potential experience included as a con-
trol variable, the estimated returns increase
to about .11.

The model with potential experience con-
trols for the fact that those with more school-
ing typically have fewer years of work experi-
ence, since educated men usually start full-
time work later (that is, after their schooling
is completed). Because Si and Xi are negat-
ively correlated, the OVB formula tells us
that omitting experience, which has a posit-
ive effect on earnings, leads to a lower estim-
ate of the returns to schooling than we can
expect in long regressions that include ex-
perience controls. Mincer’s estimates imply
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that white men with a given level of experi-
ence enjoy an 11% earnings advantage for
each additional year of education. It remains
to be seen, however, whether this is a causal

effect.3

Of Singers, Fencers, and PhDs: Ability
Bias

Equation (6.1) compares men with more and
fewer years of schooling, while holding their
years of work experience fixed. Is control for
potential experience sufficient for ceteris to
be paribus? In other words, at a given exper-
ience level, are more- and less-educated
workers equally able and diligent? Do they
have the same family connections that might
offer a leg up in the labor market? Such
claims seem hard to swallow. Like other
masters, we’re pretty highly educated
ourselves. And we’re smarter, harder
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working, and better bred than most of those
who didn’t stick it out in the schooling de-
partment, or so we tell ourselves. The good
qualities that we imagine we share with oth-
er highly educated workers are also associ-
ated with higher earnings, complicating the
causal interpretation of regression estimates
like those in equation (6.2).

We can hope to improve on these simple
regression estimates by controlling for at-
tributes correlated with schooling, variables
we’ll call Ai (short for “ability”). Ignoring the
experience term for now and focusing on
other sources of OVB, the resulting long re-
gression can be written as

The OVB formula tells us that the short re-
gression slope from a model with no
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controls, ρs, is related to the long regression
slope in model (6.3) by the formula

where δAS is the slope from a bivariate re-

gression of Ai on Si. As always, short (ρs)

equals long (ρl) plus the regression of omit-
ted (from short) on included (δAS) times the
effect of omitted in long (γ). In this context,
the difference between short and long is
called ability bias since the omitted variable
is ability.

Which way does ability bias go? We’ve
defined Ai so that γ in the long regression is
positive (otherwise, we’d call Ai dis-ability).
Surely δAS is positive as well, implying up-
ward ability bias: we expect the short regres-

sion ρs to exceed the more controlled ρl.
After all, our London School of Economics
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and MIT students tend to be high ability, at
least in the sense of having high test scores
and good grades in high school. On the other
hand, some people cut their schooling short
so as to pursue more immediately lucrative
activities. Sir Mick Jagger abandoned his
pursuit of a degree at the London School of
Economics in 1963 to play with an outfit
known as the Rolling Stones. Jagger got no
satisfaction, and he certainly never gradu-
ated from college, but he earned plenty as a
singer in a rock and roll band. No less im-
pressive, Swedish épée fencer Johan Har-
menberg left MIT after 2 years of study in
1979, winning a gold medal at the 1980 Mo-
scow Olympics, instead of earning an MIT
diploma. Harmenberg went on to become a
biotech executive and successful researcher.
These examples illustrate how people with
high ability—musical, athletic, entrepreneur-
ial, or otherwise—may be economically
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successful without the benefit of an educa-
tion. This suggests that δAS, and hence ability
bias, can be negative as easily as positive.

The Measure of Men: Controlling
Ability

Here’s an easy work-around for the ability
bias roadblock: collect information on Ai and
use it as a control in regressions like equa-
tion (6.3). In an effort to tackle OVB in es-
timates of the returns to schooling, ’metrics
master Zvi Griliches used IQ as an ability

control.4 Without IQ in the model, Griliches’

estimate of ρs in a model controlling for po-
tential experience is .068. Griliches’ estim-
ated short regression schooling coefficient is
well below Mincer’s estimate of about 11%,
probably due to differences in samples and
dependent variables (Griliches looked at ef-
fects on hourly wages instead of annual
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earnings). Importantly, the addition of an IQ

control knocks Griliches’ estimate down to ρl

= .059, a consequence of the facts that IQ
and schooling are strongly positively correl-
ated and that higher IQ people earn more (so
the effect of omitted ability in long is indeed
positive).

Although intriguing, it’s hard to see Gri-
liches’ findings as conclusive. IQ doesn’t cap-
ture Mick Jagger’s charisma or Johan Har-
menberg’s perseverance, dimensions of abil-
ity that are rarely measured in statistical
samples. The relevant notion of ability here
is an individual’s earnings potential, a
concept reminiscent of the potential out-
comes we use to describe causal effects
throughout the book. The problem with po-
tential outcomes, as always, is that we can
never see them all, we see only the one asso-
ciated with the road taken. For example, we
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see only the “highly educated” potential out-
come in a sample of college graduates. We
can’t know how such people would have
fared if they’d followed Johan and Mick out
of college. Attempts to summarize potential
earnings with a single test score are probably
inadequate. Moreover, for reasons explained
in Section 6.2 and detailed further in the ap-
pendix to this chapter, when schooling is
mismeasured (as we think it often is), estim-
ates with ability controls can be misleadingly
small.

Beware Bad Control

Perhaps more controls are the answer. Why
not control for occupation, for example?
Many data sets that report earnings also
classify workers’ jobs, such as manager or
laborer. Surely occupation is a strong pre-
dictor of both schooling and earnings,
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possibly capturing traits that distinguish
Mick and Johan from more average Joes. By
the logic of OVB, therefore, we should con-
trol for occupation, a matter easily accom-
plished by including dummy variables to in-
dicate the types of jobs held.

Although occupation is strongly correlated
with both schooling and wages, occupation
dummies are bad controls in regressions
meant to capture causal effects of schooling
on wages. The fact that Master Joshway
works today as a professor and not as a
nurse’s aide (as he once did) is in part a re-
ward for his extravagant schooling. It’s a
mistake to eliminate this benefit from our
calculation by comparing only professors or
nurse’s aides when attempting to quantify
the economic value of schooling. Even in a
world where all professors earn a uniform $1
million a year (may it soon come to pass) and
all nurse’s aides earn a uniform $10,000, an
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experiment that randomly assigns schooling
would show that schooling raises wages. The
channel by which wages are increased in this
notional experiment is the shift from lowly
nurse’s aide to elevated professorness.

There’s a second, more subtle, confound-
ing force here: bad controls create selection
bias. To illustrate, suppose we’re interested
in the effects of a college degree and that col-
lege completion is randomly assigned.
People can work in one of two occupations,
white collar and blue collar, and a college de-
gree naturally makes white collar work more
likely. Because college changes occupation
for some, comparisons of wages by college
degree status conditional on occupation are
no longer well balanced, even when college
degrees are randomly assigned and uncondi-
tional comparisons are apples-to-apples.

This troubling phenomenon is a composi-
tion effect. By virtue of random assignment,
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those who do and don’t have a college degree
are similar in every way, at least on average.
Most importantly, they have the same aver-
age Y0i, that is, the same average earnings
potential. Suppose, however, that we limit
the comparison to those who have white col-
lar jobs. The noncollege control group in this
case consists entirely of especially bright
workers who manage to land a white collar
job without the benefit of a college educa-
tion. But the white collar group that gradu-
ates from college includes these always-
white-collar guys plus a weaker group that
lands a white collar job by virtue of complet-
ing college but not otherwise.

We can see the consequences of this com-
positional difference by imagining three
equal-sized groups of workers. The first
group works a blue collar job with or without
college (Always Blue, or AB). A second group
works a white collar job irrespective of their
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education (Always White, or AW). Members
of a third group, Blue White (BW), get a
white collar job only with a college degree.
These potential occupations are described in
the first two columns of Table 6.1, which lists
jobs obtained by those in each group in scen-
arios with and without a college degree.

In spite of the fact that college is randomly
assigned, and simple comparisons of college
and noncollege workers reveal causal effects,
within-occupation comparisons are mislead-
ing. Suppose, for the sake of argument, the
value of college is the same $500 per week
for all three groups. Although the three types
of workers enjoy the same gains from a col-
lege education, their potential earnings (that
is, their Y0i values) are likely to differ. To be
concrete, suppose the AW group earns
$3,000 per week without a college degree,
the AB group earns only $1,000 per week
without a college degree, and the BWs earn
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something in the middle, say, $2,000 per
week without a college degree. Columns (3)
and (4) of Table 6.1 summarize these facts.

TABLE 6.1
How bad control creates selection bias

Limiting the college/noncollege comparis-
on to those who have white collar jobs, the
average earnings of college graduates is giv-
en by the average of the $3,500 earned by
the AWs with a college degree and the
$2,500 earned by the BWs, while the average
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for noncollege graduates is the constant
$3,000 earned by the AWs without a college
degree. Because the average of $3,500 and
$2,500 also equals $3,000, the conditional-
on-white-collar comparison by college
graduation status is zero, a misleading es-
timate of the returns to college, which is
$500 for everyone. The comparison of earn-
ings by graduation status among blue collar
workers is an equally misleading zero. Al-
though random assignment of college en-
sures equal proportions of apples and or-
anges (types or groups) in the college and
noncollege barrels, conditioning on white
collar employment, an outcome determined
in part by college graduation, distorts this
balance.

The moral of the bad control story is that
timing matters. Variables measured before
the treatment variable was determined are
generally good controls, because they can’t
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be changed by the treatment. By contrast,
control variables that are measured later
may have been determined in part by the
treatment, in which case they aren’t controls
at all, they are outcomes. Occupation in a re-
gression model for the causal effect of
schooling is a case in point. Ability controls
(such as test scores) may also have this prob-
lem, especially if test scores come from tests
taken by those who have completed most of
their schooling. (Schooling probably boosts
test scores.) This is one more reason to ques-
tion empirical strategies that rely on test
scores to remove ability bias from economet-

ric estimates of the returns to schooling.5

6.2 Twins Double the Fun

Twinsburg, Ohio, near Cleveland, was foun-
ded as Millsville in the early nineteenth
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century. Prosperous Millsville businessmen
Moses and Aaron Wilcox were identical
twins whom few could distinguish. Moses
and Aaron were generous to Millsville in
their success, a fact recognized when Mills-
ville was renamed Twinsburg in the early
nineteenth century. Since 1976, Twinsburg
has embraced its zygotic heritage in the form
of a summer festival celebrating twins. Mills-
ville’s annual Twins Days attract not only
twins reveling in their similarities but also
researchers looking for well-controlled
comparisons.

Twin siblings indeed have much in com-
mon: most grow up in the same family at the
same time, while identical twins even share
genes. Twins might therefore be said to have
the same ability as well. Perhaps the fact that
one twin gets more schooling than his or her
twin sibling is due mostly to the sort of
serendipitous forces discussed in Chapter 2.
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The notion that one twin provides a good
control for the other motivates a pair of stud-
ies by masters Orley Ashenfelter, Alan

Krueger, and Cecilia Rouse.6 The key idea
behind this work, as in many other studies
using twins, is that if ability is common to a
pair of twin siblings, we can remove it from
the equation by subtracting one twin’s data
from the other’s and working only with the
differences between them.

The long regression that motivates a twins
analysis of the returns to schooling can be
written as

Here, subscript f stands for family, while
subscript i = 1, 2 indexes twin siblings, say,
Karen and Sharon or Ronald and Donald.
When Ronald and Donald have the same
ability, we can simplify by writing Aif = Af.
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This in turn implies that we can model their
earnings as

Subtracting the equation for Donald from
that for Ronald gives

an equation from which ability disappears.7

From this we learn that when ability is con-
stant within twin pairs, a short regression of
the difference in twins’ earnings on the dif-
ference in their schooling recovers the long

regression coefficient, ρl.
Regression estimates constructed without

differencing in the twins sample generate a
schooling return of about 11%, remarkably
similar to Mincer’s. This can be seen in the
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first column of Table 6.2. The model that
produces the estimates in column (1) in-
cludes age, age squared, a dummy for wo-
men, and a dummy for whites. White twins
earn less than black twins, an unusual result
in the realm of earnings comparisons by
race, though the gap here is not significantly
different from zero.

The differenced equation (6.5) generates a
schooling return of about 6%, a result shown
in column (2) of Table 6.2. This is substan-
tially below the short regression estimate in
column (1). This decline may reflect ability
bias in the short model. Yet, once again,
more subtle forces may also be at work.

Twin Reports from Twinsburg

Twins are similar in many ways, includ-
ing—alas—their schooling. Of 340 twin pairs
interviewed for the Twinsburg schooling
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studies, about half report identical educa-
tional attainment. Schooling differences, S1,f

− S2,f, vary much less than schooling levels,
Sif. If most twins really have the same
schooling, then a fair number of the nonzero
differences in reported schooling may reflect
mistaken reports by at least one of them. Er-
roneous reports, called measurement error,

tend to reduce estimates of ρl in equation
(6.5), a fact that may account for the decline
in the estimated returns to schooling after
differencing. A few people reporting their
schooling incorrectly sounds unimportant,
yet the consequences of such measurement
error can be major.

To see why mistakes matter, imagine that
twins from the same family always have the
same schooling. In this scenario, the only
reason S1,f − S2,f isn’t zero for everyone is be-
cause schooling is sometimes misreported.
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Suppose such erroneous reports are due to
random forgetfulness or inattention rather
than something systematic. The coefficient
from a regression of earnings differences on
schooling differences that are no more than
random mistakes should be zero since ran-
dom mistakes are unrelated to wages. In an
intermediate case, where some but not all of
the variation in observed schooling is due to
misreporting, the coefficient in equation
(6.5) is smaller than it would be if schooling
were reported correctly. The bias generated
by this sort of measurement error in re-
gressors is called attenuation bias. The
mathematical formula for attenuation bias is
derived in the chapter appendix.
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TABLE 6.2
Returns to schooling for Twinsburg twins

Notes: This table reports estimates of the returns to
schooling for Twinsburg twins. Column (1) shows OLS es-
timates from models estimated in levels. OLS estimates of
models for cross-twin differences appear in column (2).
Column (3) reports 2SLS estimates of a levels regression us-
ing sibling reports as instruments for schooling. Column (4)
reports 2SLS estimates using the difference in sibling re-
ports to instrument the cross-twin difference in schooling.
Standard errors appear in parentheses.
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Misreported schooling attenuates the
levels regression estimates shown in column
(1) of Table 6.2, but less so than the differ-
enced estimates in column (2). This differ-
ence in the extent of attenuation bias is also
illustrated by the hypothetical scenario
where all twins share the same schooling but
schooling levels differ across families. When
twins in the same family really have the same
schooling, all variation in within-family dif-
ferences in reported schooling comes from
mistakes. By contrast, most of the cross-fam-
ily variation in reported schooling reflects
real differences in education. Real variation
in schooling is related to earnings, a fact that
moderates attenuation bias in estimates of
the model for levels, equation (6.4). This re-
flects a general point about the consequences
of covariates for models with mismeasured
regressors—additional controls make
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attenuation bias worse—a point detailed in
the chapter appendix.

Measurement error raises an important
challenge for the Twinsburg analysis, since
measurement error alone may explain the
pattern of results seen in columns (1) and (2)
of Table 6.2. Moving from the levels to the
differenced regression accentuates attenu-
ation bias, probably more than a little. The
decline in schooling coefficients across
columns may therefore have little to do with
ability bias. Fortunately, seasoned masters
Ashenfelter, Krueger, and Rouse anticipated
the attenuation problem. They asked each
twin to report not only their own schooling
but also that of their sibling. As a result, the
Twinsburg data sets contain two measures of
schooling for each twin, one self-report and
one sibling report. The sibling reports
provide leverage to reduce, and perhaps even
eliminate, attenuation bias.
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The key tool in this case, as with many of
the other problems we’ve encountered, is IV.
Karen and Sharon make mistakes when re-
porting each other’s schooling as well as
when reporting their own. As long as the
mistakes in Karen’s report of her sister’s
schooling are unrelated to mistakes in her
sister’s self-report, and vice versa, Karen’s
report of Sharon’s schooling can be used as
an instrument for Sharon’s self-report, and
vice versa. IV eliminates attenuation bias in
the levels regression as well as in estimates
of the differenced model (though the levels
regression is still more likely than the differ-
enced regression to suffer from ability bias).

As always, an IV estimate is the ratio of
reduced-form estimates to first-stage estim-
ates. When instrumenting the levels equa-
tion, the reduced-form estimate is the effect
of Karen’s report of Sharon’s schooling on
Sharon’s earnings. The corresponding first-
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stage estimate is the effect of Karen’s report
of Sharon’s schooling on Sharon’s self-repor-
ted schooling. Reduced-form and first-stage
results are still subject to attenuation bias.
But when we divide one by the other, these
biases cancel out, leaving us with an unatten-
uated IV estimate.

IV works similarly in the first differenced
model. The instrument for within-family dif-
ferences in schooling is the difference in the
cross-sibling reports. Provided that measure-
ment errors in own- and cross-sibling
schooling reports are uncorrelated, IV pro-
duces the no-OVB, unattenuated long-re-

gression return to schooling, ρl, that we set
out to obtain. Uncorrelatedness of reporting
errors across siblings is a strong assumption,
but a natural starting point for any explora-
tion of bias from measurement error.
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IV estimates of the levels equation appear
in column (3) of Table 6.2 (as always, we ex-
ecute this IV procedure by running 2SLS,
which works no less well with instruments
that are not dummy variables).
Instrumenting self-reported schooling with
cross-sibling reported schooling increases
the estimated return to schooling only a
little, from .110 to .116. This result is consist-
ent with the notion that there’s little meas-
urement error in the level of schooling. By
contrast, instrumenting the differenced
equation boosts the estimated return to
schooling from .062 to .108. This result, re-
ported in column (4) of Table 6.2, points to
considerable measurement error in the dif-
ferenced data. At the same time, the differ-
enced IV estimate of .108 is not far below the
cross-sectional estimate of .116, suggesting
the problem we set out to solve—ability bias
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in estimates of the returns to schooling—isn’t
such a big deal after all.

6.3 Econometricians Are Known
by Their … Instruments

It’s the Law

Economists think people make important
choices such as those related to schooling by
comparing anticipated costs with expected
benefits. The cost of staying in secondary
school is determined partly by compulsory
schooling laws, which punish those who
leave school too soon. Since you avoid pun-
ishment by staying in school, compulsory
schooling laws make extra schooling seem
cheaper relative to the alternative, dropping
out. This generates a causal chain reaction
leading from compulsory schooling laws to
schooling choices to earnings that might
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reveal the economic returns to schooling.
The ’metrics methods behind this idea are
those of Chapters 3 and 5: instrumental vari-
ables and differences-indifferences.

As always, IV begins with the first stage.
One hundred years ago, there were few com-
pulsory attendance laws, while today most
American states keep students in school until
at least age 16. Many states also forbid
school-aged children from working, or re-
quire school authorities to give permission
for a child to work. Assuming that some stu-
dents would otherwise drop out if not for
such laws, stricter compulsory school re-
quirements should increase average school-
ing. Provided changes in state compulsory
attendance laws are also unrelated to the po-
tential earnings of residents in each state (as
determined by things like family back-
ground, the states’ industrial structure, or
other policy changes), these laws create valid
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instruments for schooling in equations like
(6.1).

But compulsory attendance laws probably
are related to potential earnings. In the early
twentieth century, for example, agricultural
Southern states had few compulsory attend-
ance requirements, while compulsory
schooling laws were stricter in the more in-
dustrial North. Simple comparisons of earn-
ings across U.S. regions typically reveal vast
differences in earnings, but these are mostly
unrelated to the North’s more rigorous
schooling requirements. Compulsory school-
ing requirements also grew stricter over
time, but here, too, simple comparisons are
misleading. Many features of the American
economy changed as the twentieth century
progressed; compulsory schooling laws are
but a small part of this ever-evolving eco-
nomic story.
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A creative combination of DD and IV of-
fers a possible way around OVB roadblocks
in this context. Compulsory schooling re-
quirements expanded and tightened most
dramatically in the first half of the twentieth
century. Masters Joshway and Daron
Acemoglu collected state-by-year informa-
tion on the compulsory schooling laws ap-
plicable to those who might have been in

school at this time.8 These laws include child
labor provisions as well as compulsory at-
tendance requirements. Child labor laws that
require a certain amount of schooling be
completed before children are allowed to
work seem to have increased schooling more
than attendance requirements. A useful sim-
plification in this context uses the laws in ef-
fect in census respondents’ states of birth at
the time they were 14 years old to identify
states and years in which 7, 8, and 9 or more
years of schooling were required before work
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was allowed. The resulting set of instrument-
al variables consists of dummies for each of
these three categories; the omitted category
consists of states and years in which 6 or
fewer years of schooling were required be-
fore work was allowed.

Because child labor instruments vary with
both state and year of birth, they can be used
to estimate a first-stage equation that con-
trols for possible time effects through the in-
clusion of year-of-birth dummies, while con-
trolling for state characteristics through the
inclusion of state-of-birth dummies. Control
for state effects should mitigate bias from re-
gional differences that are correlated with
compulsory schooling provisions, while the
inclusion of year-of-birth effects should mit-
igate bias from the fact that earnings differ
across birth cohorts for many reasons be-
sides compulsory schooling laws. The
resulting first-stage equation looks like the
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Chapter 5 regression DD model (described
by equation (5.5)) used to estimate the effect
of state and year changes in the MLDA on
death rates. Here, however, year-of-birth
dummies replace dummies for calendar
time.

The Acemoglu and Angrist compulsory
schooling first-stage equation was estimated
with an extract of men in their forties, drawn
from each of the U.S. census samples avail-
able every decade from 1950 to 1990. Stack-
ing these five censuses produces a single
large data set in which different censuses
contribute different cohorts. For example,
men in their forties observed in the 1950
Census were born from 1900 to 1909 and
subject to laws in effect in the 1910s and
1920s, while men in their forties observed in
the 1960 Census were born from 1910 to 1919
and subject to laws in effect in the 1920s and
1930s.
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The first-stage estimates reported in
column (1) of Table 6.3 suggest that child
labor laws requiring 7 or 8 years of schooling
before work was allowed increased schooling
(measured as highest grade completed) by
about two-tenths of a year. Laws requiring 9
or more years of schooling before work was
allowed had an effect twice as large. A paral-
lel set of reduced-form estimates appear in
column (3) of the table. These come from re-
gression models similar to those used to con-
struct the first-stage estimates reported in
column (1), with the log weekly wage repla-
cing years of schooling as the dependent
variable. Laws requiring 7 or 8 years of
schooling before work was allowed appear to
have raised wages by about 1%, while laws
requiring 9 or more years of schooling before
work increased earnings by almost 5%,
though only the latter estimate is significant.
The 2SLS estimate generated by these
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estimates is .124 (with an estimated standard
error of .036).

A 12% wage gain for each additional year
of schooling is impressive, all the more so
since the schooling increase in question is in-
voluntary. Stronger compulsory schooling
laws appear to raise schooling, and this in
turn produces higher wages for the men con-
strained by these laws (compulsory school-
ing compliers, in this case). Especially inter-
esting is the fact that the 2SLS estimate of
the returns to schooling generated by com-
pulsory schooling instruments exceeds the
corresponding OLS estimate of .075. This
finding weighs against the notion of upward
ability bias in the OLS estimate.
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TABLE 6.3
Returns to schooling using child labor law

instruments

Notes: This table shows 2SLS estimates of the returns to
schooling using as instruments three dummies indicating
the years of schooling required by child labor laws as a con-
dition for employment. Panel A reports first-stage and
reduced-form estimates controlling for year and state of
birth effects and for census year dummies. Columns (2) and
(4) show the results of adding state-specific linear trends to
the list of controls. Panel B shows the 2SLS estimates of the
returns to schooling generated by the first-stage and
reduced-form estimates in panel A. Sample size is 722,343.
Standard errors are reported in parentheses.
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Before declaring mission accomplished, a
master looks for threats to validity. The vari-
ation in schooling generated by compulsory
schooling laws produces a DD-style first
stage and reduced form. As discussed in
Chapter 5, the principal threat to validity in
this context is omitted state-specific trends.
Specifically, we must worry that states in
which compulsory schooling laws grew
stricter simultaneously experienced unusu-
ally large wage growth across cohorts for
reasons unrelated to schooling. Perhaps
wage growth and changes in schooling laws
are both driven by some third variable, say,
changes in industrial structure.

The case for omitted variables bias in this
context grows even stronger once we recog-
nize that most of the action in the compuls-
ory schooling research design comes from
comparisons of Northern and Southern
states. Southern states saw enormous
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economic growth in the twentieth century,
while at the same time, social legislation in
these states proliferated. The relative growth
in earnings in Southern states might have
been caused in part by more restrictive com-
pulsory attendance provisions. But it might
not.

Chapter 5 explains that a simple check for
state-specific trends adds a linear time trend
for each state to the model of interest. In this
case, the relevant time dimension is year of
birth, so the model with state-specific trends
includes a separate linear year-of-birth vari-
able for each state of birth in the sample (the
regression model with year-of-birth trends
looks like equation (5.6)).

Columns (2) and (4) in Table 6.3 report
the results of this addition. The estimates in
these columns offer little evidence that com-
pulsory schooling laws matter for either
schooling or wages. First-stage and reduced-
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form estimates both fall precipitously in the
model with trends, and none are significantly
different from zero. Importantly, the first-
stage estimates in column (2) are more pre-
cise (that is, have smaller standard errors)
than those estimated without state-specific
trends. Lack of statistical significance there-
fore comes from the fact that the estimates
with trends are much smaller and not from
reduced precision. The reduced-form estim-
ates in column (4) similarly offer little evid-
ence of a link between compulsory school
laws and earnings. The 2SLS estimate gener-
ated by columns (2) and (4) comes out at an
implausibly large .399, but with a standard
error almost as large. Sad to say for Master
Joshway, Table 6.3 reveals a failed research
design.

556/694

text/part0013.html#t6-3


To Everything There Is a Season (of
Birth)

MASTER OOGWAY: Yesterday is history, to-
morrow is a mystery, but today is a gift.
That is why it is called the present.

Kung Fu Panda

You get presents on your birthday, but some
birth dates are better than others. A birthday
that falls near Christmas might reduce your
windfall if gift givers try to make one present
do double duty. On the other hand, many
Americans born late in the year get surprise
gifts in the form of higher schooling and
higher earnings.

The path leading from late-year births to
increased schooling and earnings starts in
kindergarten. In most states, children enter
kindergarten in the year they turn 5, whether
or not they’ve had a fifth birthday by the
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time school starts in early September. Jae,
born on January 1st, was well on the way to-
ward his sixth birthday when he started
school. By contrast, Dante, born on Decem-
ber 1st, was not even 5 when he started. Such
birthday-based differences in school-starting
age are life changing for some.

The life-changing nature of school-starting
age is an unintended consequence of Americ-
an compulsory attendance laws. By the
middle of the twentieth century, most states
were allowing students to leave school (that
is, to drop out of high school) only after
they’d turned 16 (some states require attend-
ance until 17 or 18). Most compulsory at-
tendance laws allow you to quit school once
you’ve reached the dropout age, without fin-
ishing the school year. Jae, having started
school at the ripe old age of 5 years and 8
months, turned 16 in January ten years later,
early in his tenth-grade year. Dante, having
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started school at the tender age of 4 years
and 9 months, turned 16 in December eleven
years later, after finishing tenth grade and
starting eleventh. Both were itching to leave
school as soon as they were allowed, and
each dropped out immediately on turning 16.
But Dante, having started school younger,
was forced by accident of birth to complete
one more grade than Jae.

You can’t pick your birthday. Even your
parents probably found your birthday hard
to fix. Ultimately, birth timing has a good
deal of randomness to it, mimicking experi-
mental random assignment. By virtue of the
partly random nature of birth dates, men like
Jae and Dante, born at different times of the
year, are likely to have similar family back-
grounds and talents, even though they have
very different educational attainment. This
sounds like a promising scenario for IV, and
it is.
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Masters Joshway and Alan Krueger used
differences in schooling generated by quarter
of birth (QOB) to construct IV estimates of
the economic returns to compulsory school-

ing.9 Angrist and Krueger analyzed large
publicly available samples from the 1970 and
1980 U.S. Censuses, samples similar to those
used by Acemoglu and Angrist. Somewhat
unusually for publicly available data sets,
these census files contain information on re-
spondents’ QOB.

The QOB first stage for 1980 Census re-
spondents appears in Figure 6.1. This figure
plots average schooling by year and QOB for
men born in the 1930s. Most men in these
cohorts finished high school, so their average
highest grade completed ranges from 12 to 13
years. Figure 6.1 exhibits a surprising saw-
tooth pattern: Men born earlier in the year
tend to have lower average schooling than
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those born later. The teeth of the saw have
an amplitude of about .15. This may not
seem like much, but it’s consistent with the
story of Jae and Dante. Among men born in
the 1930s, about 20% left school in grade 10
or sooner. Late-quarter births impose about
.75 of a grade’s worth of extra schooling on
this 20%. The calculation .2 × .75 = .15 ac-
counts for the ups and downs in Figure 6.1.

As always, IV is the ratio of the reduced
form to the corresponding first stage. The
QOB reduced form is plotted in Figure 6.2.
The flatness of earnings from year to year
seen in this figure isn’t surprising. Earnings
initially increase sharply with age, but the
age-earnings profile tends to flatten out for
men in their forties. Importantly, however,
the QOB sawtooth in schooling is paralleled
by a similar QOB sawtooth in average earn-
ings. Men born later in the year not only get
more schooling than those born earlier, they
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have higher earnings as well. IV logic attrib-
utes the sawtooth pattern in average earn-
ings by QOB to the sawtooth pattern in aver-
age schooling by QOB.

FIGURE 6.1
The quarter of birth first stage

Notes: This figure plots average schooling by quarter of
birth for men born in 1930–1939 in the 1980 U.S. Census.
Quarters are labeled 1–4, and symbols for the fourth quarter
are filled in.
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FIGURE 6.2
The quarter of birth reduced form

Notes: This figure plots average log weekly wages by
quarter of birth for men born in 1930–1939 in the 1980 U.S.
Census. Quarters are labeled 1–4, and symbols for the
fourth quarter are filled in.

A simple QOB-based IV estimate com-
pares the schooling and earnings of men
born in the fourth quarter to the schooling
and earnings of men born in earlier quarters.
Table 6.4 organizes the ingredients for this
IV recipe using the same sample as was used
to construct Figure 6.1. Men born in the
fourth quarter earn a little more than those
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born earlier, a difference of about .7%.
Fourth-quarter births also have higher aver-
age educational attainment; here, the differ-
ence is about .09 years. Dividing the first dif-
ference by the second, we have
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TABLE 6.4
IV recipe for an estimate of the returns to
schooling using a single quarter of birth

instrument

Notes: Sample size is 329,509. Standard errors are re-
ported in parentheses.
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TABLE 6.5
Returns to schooling using alternative

quarter of birth instruments

Notes: This table reports OLS and 2SLS estimates of the
returns to schooling using quarter of birth instruments. The
estimates in columns (3)–(5) are from models controlling
for year of birth. Columns (1) and (3) show OLS estimates.
Columns (2), (4), and (5) show 2SLS estimates using the in-
struments indicated in the third row of the table. F-tests for
the joint significance of the instruments in the
corresponding first-stage regression are reported in the
second row. Sample size is 329,509. Standard errors are re-
ported in parentheses.

By way of comparison, the bivariate regres-
sion of log weekly wages on schooling comes
out remarkably close, at .071. These simple
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OLS and IV estimates are repeated in the
first two columns of Table 6.5. The columns
containing IV estimates are labeled “2SLS”
because, as always, that’s how we do IV.

As with the IV estimates of the effects of
family size discussed in Chapter 3, we can
use 2SLS to add covariates and additional in-
struments to the QOB IV story. OLS and
2SLS estimates of models including year of
birth dummies (a control for age in our 1980
cross section) appear in columns (3) and (4)
of Table 6.5. These results are almost indis-
tinguishable from those in columns (1) and
(2). Adding dummies for first and second
quarters of birth to the instrument list,
however, leads to a noteworthy gain in preci-
sion. The three-instrument estimate, repor-
ted in column (5), is larger than single-in-
strument estimates reported in columns (2)
and (4), with a standard error that falls from
.028 to .020.
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What’s required for 2SLS estimates using
QOB instruments to capture the causal effect
of education on earnings? First, the instru-
ments must predict the regressor of interest
(in this case, schooling). Second, the instru-
ments should be as good as randomly as-
signed in the sense of being independent of
omitted variables (in this case, variables like
family background and ability). Finally, QOB
should affect outcomes solely through the
channel we’ve chosen as the variable to be
instrumented (in this case, schooling). Other
channels must be excluded. It’s worth asking
how QOB instruments measure up to these
first-stage, independence, and exclusion re-
striction requirements.

We’ve seen that QOB produces a clear
sawtooth pattern in highest grade com-
pleted. This is a compelling visual represent-
ation of a strong first stage, confirmed by the
large F-statistics in Table 6.5. As discussed in
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the appendix to Chapter 3, a large first-stage
F-statistic suggests bias from weak instru-
ments is unlikely to be a problem in this
context.

Is QOB independent of maternal charac-
teristics? Birthdays aren’t literally randomly
assigned, of course. Researchers have long
documented season of birth patterns in
mothers’ socioeconomic background. A re-
cent study by Kasey Buckles and Daniel
Hungerman explores these patterns fur-

ther.10 Buckles and Hungerman find that
maternal schooling—a good measure of fam-
ily background—peaks for mothers who give
birth in the second quarter. This suggests
that family background cannot account for
the seasonal pattern in schooling and wages
seen in Figures 6.1 and 6.2, both of which ex-
hibit third- and fourth-quarter peaks. In fact,
average maternal schooling by QOB is
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slightly negatively correlated with average
offspring schooling by QOB. Not surpris-
ingly, therefore, control for average maternal
characteristics moderately increases IV es-
timates of schooling returns using QOB in-
struments. Season of birth variation in fam-
ily background, though not zero, does not
follow a pattern that changes QOB-based
2SLS estimates substantially.

Finally, what of exclusion? The QOB first
stage is generated by the fact that later-born
students enter school younger than those
born earlier in the year, and therefore com-
plete more schooling before they’re allowed
to drop out. But what if school-starting age
itself matters? The most commonly told
entry-age story is that the youngest children
in a first-grade class are at a disadvantage,
while children who are a little older than
their classmates tend to do better. Here too,
the circumstantial evidence for QOB
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instruments is encouraging. The crux of the
QOB-compulsory schooling story is that
younger entrants ultimately come out ahead,

and this is what the data show.11

Empirical strategies are never perfect.
Weak nails bend, but the house of ’metrics
needn’t collapse. We can’t prove that a par-
ticular IV strategy satisfies the assumptions
required for a causal interpretation. The eco-
nometrician’s position is necessarily defens-
ive. As we’ve seen, however, key assumptions
can be probed and checked in a variety of
ways, and so they must be. Masters routinely
check their own work and assumptions,
while carefully evaluating results reported by
others.

On the substantive side, IV estimates us-
ing QOB instruments come out similar to or
larger than the corresponding OLS estimates
of the economic return to schooling. Modest
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measurement error in the schooling variable
might explain the gap between 2SLS and
OLS estimates, much as in the twins data.
These results suggest downward bias from
mismeasured schooling matters as much or
more than any ability bias that causes us to
overestimate the economic value of educa-
tion. The earnings gain generated by an ad-
ditional grade completed seems to be about
7–10%. Bertie Gladwin might have accom-
plished even more had he finished his
schooling sooner.

6.4 Rustling Sheepskin in the
Lone Star State

Schooling means many things, and every
educational experience is different. But eco-
nomists look at diverse educational experi-
ences and see them all as creating human
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capital: a costly investment in skills from
which we also expect to see a return. Some
students, like Bertie Gladwin, enjoy school
for its own sake and show little interest in
economic returns. But many more probably
see their schooling as stressful, tiring, and
expensive. In addition to tuition costs, time
spent in school could have been spent work-
ing. Many college students spend relatively
little on tuition, but all full-time students pay
an opportunity cost. This notion—that a
large part of the costs of acquiring an educa-
tion comes in the form of forgone earn-
ings—leads us to expect each year of addi-
tional schooling to generate about the same
economic return, whether it’s the tenth,
twelfth, or twentieth year at the books. The
simple human capital view of schooling em-
bodies this idea.

Of course, people who have not had the
benefit of economics training probably don’t
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think about education like this. Most meas-
ure their educational attainment in terms of
degrees instead of years. Few job applicants
describe themselves as having completed “17
years of schooling.” Rather, applicants list
the schools from which they graduated and
the dates of degrees received. To an econom-
ist, however, degrees are just pieces of paper
that should have little or no real value.
Master Stevefu is a case in point: though he
spent many years in college, attending
Susquehanna University in central
Pennsylvania (among other fine institutions)
he has yet to earn his bachelor’s degree. Re-
flecting this dismissive view of the value of
certification, economists refer to the hypo-
thesis that degrees matter as “sheepskin ef-
fects,” after the material on which diplomas
were originally inscribed.

The search for sheepskin effects led
Masters Damon Clark and Paco Martorell to
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a clever fuzzy RD research design.12 They ex-
ploit the fact that in Texas, as in many other
states, receipt of a high school diploma is
conditional on satisfactory completion of an
exit exam in addition to state-required
coursework. Students first take this exam in
tenth or eleventh grade, with retests sched-
uled periodically for those who fail. A last-
chance exit exam for those who have failed
previously is administered at the end of
twelfth grade. In truth this isn’t the last
chance for a Texas senior to earn a diploma;
it’s possible to try again later. Still, for many
who take it, the last-chance exam is decisive.

The decisive nature of the last-chance exit
exam for many Texas high school seniors is
documented in Figure 6.3, which plots the
probability of diploma receipt against last-
chance exam scores, centered at the passing
threshold. The figure, which plots averages
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conditional on each score value along with
fitted values from a fourth-order polynomial
estimated separately on either side of the
passing cutoff, shows diploma award rates
close to .5 for students who miss the cutoff.
For those whose scores clear the cutoff,
however, diploma award rates jump above
90%. This change is discontinuous and un-
ambiguous: Figure 6.3 documents a fuzzy
RD first stage of nearly .5 for the effects of
exit exam passage on diploma receipt.

Many of those who earn a diploma go on
to college, in which case their earnings stay
low until this additional schooling is also
completed. It’s therefore important to look
far enough down the road for any sheepskin
effect in earnings to emerge. Clark and
Martorell used data from the Texas unem-
ployment insurance system, which records
longitudinal information on the earnings of
most workers in the state, to follow the
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earnings of those taking the last-chance ex-
am for up to 11 years.

Earnings data for a period ranging from
7–11 years after students sat for their last-
chance exit exam show no evidence of sheep-
skin effects. This can be seen in Figure 6.4,
which plots average annual earnings against
exam scores in a format paralleling that of
Figure 6.3 (earnings here are in dollars and
not in logs, and the averages include zeros
for people who aren’t working). Figure 6.4 is
a picture of the reduced form in a fuzzy RD
design that uses a dummy for passing the
exit exam as an instrumental variable for the
effect of diploma receipt on earnings. As al-
ways, when the reduced form is zero—in this
case, no jump appears in Figure 6.4—we
know that the corresponding 2SLS estimate
is zero as well.
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FIGURE 6.3
Last-chance exam scores and Texas

sheepskin

Notes: Last-chance exam scores are normalized relative
to passing thresholds. Dots show average diploma receipt
conditional on each score value. The solid lines are fitted
values from a fourth-order polynomial, estimated separately
on either side of the passing cutoff (indicated by the vertical
dashed line).
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FIGURE 6.4
The effect of last-chance exam scores on

earnings

Notes: Last-chance exam scores are normalized relative
to passing thresholds. Dots show average earnings condi-
tional on each score value, including zeros for nonworkers.
The solid lines are fitted values from a fourth-order polyno-
mial, estimated separately on either side of the passing
cutoff (indicated by the vertical dashed line).

The 2SLS estimates generated by dividing
the first-stage and reduced-form discontinu-
ities seen in Figures 6.3 and 6.4 show a dip-
loma effect of $52 (with a standard error of
about $630). This amounts to less than half
a percent of average earnings, which are
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about $13,000. These are small effects in-
deed, weighing against the sheepskin hypo-
thesis. On the other hand, the associated
confidence intervals also include earnings ef-
fects of nearly 10%.

Large standard errors leave us with the
possibility of some sheepskin effects, so the
search for evidence on this point will surely
continue. Masters know the search for eco-
nometric truth never ends, and that what is
good today will be bettered tomorrow. Our
students teach us this.
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MASTER STEVEFU: Time for you to leave,
Grasshopper. You must continue your
journey alone. Remember, when you fol-
low the ’metrics path, anything is
possible.
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MASTER JOSHWAY: Anything is possible,
Grasshopper. Even so, always take the
measure of the evidence.

Appendix: Bias from Measure-
ment Error

You’ve dreamed of running the regression

but data , on the regressor of your dreams,
are unavailable. You see only a mismeasured
version, Si. Write the relationship between
observed and desired regressors as

where mi is the measurement error in Si. To
simplify, assume errors average to zero and
are uncorrelated with and the residual, ei.
Then we have

582/694



These assumptions describe classical meas-
urement error (jazzier forms of measure-
ment error may rock your regression coeffi-
cients even more).

The regression coefficient you’re after, β in
equation (6.6), is given by

Using the mismeasured regressor, Si, instead
of , you get

where βb has a subscript “b” as a reminder
that this coefficient is biased.

To see why βb is a biased version of the
coefficient you’re after, use equations (6.6)
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and (6.7) to substitute for Yi and Si in the nu-
merator of equation (6.8):

The next-to-last equals sign here uses the as-
sumption that measurement error, mi, is un-
correlated with and ei; the last equals sign
uses the fact that is uncorrelated with a
constant and with ei, since the latter is a re-
sidual from a regression on . We’ve also
used the fact that the covariance of with it-
self is its variance (see the appendix to
Chapter 2 for an explanation of these and re-
lated properties of variance and covariance).

We’ve assumed that mi is uncorrelated
with . Because the variance of the sum of
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uncorrelated variables is the sum of their
variances, this implies

which means we can write

where

is a number between zero and one.
The fraction r describes the proportion of

variation in Si that is unrelated to mistakes
and is called the reliability of Si. Reliability
determines the extent to which measurement
error attenuates βb. The attenuation bias in
βb is

585/694



so that βb is smaller than (a positive) β un-
less r = 1, and there’s no measurement error
after all.

Adding Covariates

In Section 6.1, we noted that the addition of
covariates to a model with mismeasured re-
gressors tends to exacerbate attenuation bi-
as. The Twinsburg story told in Section 6.2 is
a special case of this, where the covariates
are dummies for families in samples of
twins. To see why covariates increase attenu-
ation bias, suppose the regression of interest
is

where Xi is a control variable, perhaps IQ or
another test score. We know from regression
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anatomy that the coefficient on in this
model is given by

where is the residual from a regression of
on Xi. Likewise, replacing with Si, the coef-
ficient on Si becomes

where is the residual from a regression of Si

on Xi.
Add the (classical) assumption that meas-

urement error, mi, is uncorrelated with the
covariate, Xi. Then the coefficient from a re-
gression of mismeasured Si on Xi is the same
as the coefficient from a regression of on Xi

(use the properties of covariance and the
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definition of a regression coefficient to see
this). This in turn implies that

where mi and are uncorrelated. We there-

fore have

Applying the logic used to establish equation
(6.9), we get

where

Like r, this lies between zero and one.
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What’s new here? The variance of is ne-
cessarily reduced relative to that of , be-
cause the variance of is the variance of a
residual from a regression model in which
is the dependent variable. Since , we
also have

This explains why adding covariates to a
model with mismeasured schooling aggrav-
ates attenuation bias in estimates of the re-
turns to schooling. Intuitively, this aggrava-
tion is a consequence of the fact that covari-
ates are correlated with accurately measured
schooling while being unrelated to mistakes.
The regression-anatomy operation that re-
moves the influence of covariates therefore
reduces the information content of a mis-
measured regressor while leaving the noise
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component—the mistakes—unchanged (test
your understanding of the formal argument
here by deriving equation (6.11)). This argu-
ment carries over to the differencing opera-
tion used to purge ability from equation
(6.4): differencing across twins removes
some of the signal in schooling, while leaving
the variance of the noise unchanged.

IV Clears Our Path

Without covariates, the IV formula for the
coefficient on Si in a bivariate regression is

where Zi is the instrument. In Section 6.2,
for example, we used cross-sibling reports to
instrument for possibly mismeasured self-re-
ported schooling. Provided the instrument is
uncorrelated with the measurement error
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and the residual, ei, in equations like (6.6),
IV eliminates the bias due to mismeasured
Si.

To see why IV works in this context, use
equations (6.6) and (6.7) to substitute for Yi

and Si in equation (6.12):

Our discussion of the mistakes in Karen and
Sharon’s reports of one another’s schooling
assumes that C(ei, Zi) = C(mi, Zi) = 0. This in
turn implies that

This happy conclusion comes from our as-
sumption that the only reason Zi is correl-
ated with wages is because it’s correlated
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with . Since , and mi is unrelated to
Zi, the usual IV miracle goes through.

PO: That is severely cool.
Kung Fu Panda 2

1 See “‘I’m Just a Late Bloomer’: Britain’s Oldest Student
Graduates with a Degree in Military Intelligence Aged 91,”
The Daily Mail, May 21, 2012.

2 Mincer’s work appears in his landmark book, Schooling,
Experience, and Earnings, Columbia University Press and
the National Bureau of Economic Research, 1974.

3 The relationship between experience and earnings de-
scribed by these estimates reflects a gradual decline in earn-
ings growth with age. To see this, suppose we increase Xi

from a value x to x + 1. The term Xi increases by 1, while
increases by

The net effect of a 1-year experience increase is therefore
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The first year of experience is therefore estimated to boost
earnings by almost 8% while the tenth year of experience in-
creases earnings by only about 5.6%. In fact, the experience
profile, as this relationship is called, flattens out completely
after about 30 years of experience.

4 Zvi Griliches, “Estimating the Returns to School-
ing—Some Econometric Problems,” Econometrica, vol. 45,
no. 1, January 1977, pages 1–22.

5 Attentive readers will notice that potential experience,
itself a downstream consequence of schooling, also falls un-
der the category of bad control. In principle, the bias here
can be removed by using age and its square to instrument
potential experience and its square. As in the studies refer-
enced in the rest of this chapter, we might also simply re-
place the experience control with age, thereby targeting a
net schooling effect that does not adjust for differences in
potential experience.

6 Orley Ashenfelter and Alan B. Krueger, “Estimates of
the Economic Returns to Schooling from a New Sample of
Twins,” American Economic Review, vol. 84, no. 5, Decem-
ber 1994, pages 1157–1173, and Orley Ashenfelter and Cecil-
ia Rouse, “Income, Schooling, and Ability: Evidence from a
New Sample of Identical Twins,” Quarterly Journal of Eco-
nomics, vol. 113, no. 1, February 1998, pages 253–284.

7 Estimates of this differenced model can also be obtained
by adding a dummy for each family to an undifferenced
model fit in a sample that includes both twins. Family dum-
mies are like selectivity-group dummies in equation (2.2) in
Chapter 2 and state dummies in equation (5.5) in Section
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5.2. With only two observations per family, models estim-
ated after differencing across twins within families to pro-
duce a single observation per family generate estimates of
the returns to schooling identical to those generated by
“dummying out” each family in a pooled sample that in-
cludes both twins.

8 Daron Acemoglu and Joshua D. Angrist, “How Large
Are Human-Capital Externalities? Evidence from
Compulsory-Schooling Laws,” in Ben S. Bernanke and Ken-
neth Rogoff (editors), NBER Macroeconomics Annual
2000, vol. 15, MIT Press, 2001, pages 9–59.

9 Joshua D. Angrist and Alan B. Krueger, “Does Compuls-
ory School Attendance Affect Schooling and Earnings?”
Quarterly Journal of Economics, vol. 106, no. 4, November
1991, pages 979–1014.

10 Kasey Buckles and Daniel M. Hungerman, “Season of
Birth and Later Outcomes: Old Questions, New Answers,”
NBER Working Paper 14573, National Bureau of Economic
Research, December 2008. See also John Bound, David A.
Jaeger, and Regina M. Baker, who were the first to caution
that IV estimates using QOB instruments might not have a
causal interpretation in “Problems with Instrumental Vari-
ables Estimation When the Correlation between the Instru-
ments and the Endogeneous Explanatory Variable Is Weak,”
Journal of the American Statistical Association, vol. 90, no.
430, June 1995, pages 443–450.

11 For more on this point, see Joshua D. Angrist and Alan
B. Krueger, “The Effect of Age at School Entry on Educa-
tional Attainment: An Application of Instrumental Variables
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with Moments from Two Samples,” Journal of the Americ-
an Statistical Association, vol. 87, no. 418, June 1992, pages
328–336.

12 Damon Clark and Paco Martorell, “The Signaling Value
of a High School Diploma,” Journal of Political Economy,
vol. 122, no. 2, April 2014, pages 282–318.
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ABBREVIATIONS AND
ACRONYMS

Abbreviations and acronyms are introduced
on the page indicated in parentheses.

2SLS two-stage least squares, an instru-
mental variables estimator that replaces
the regressor being instrumented with
fitted values from the first stage (p. 132)

ALS a study by Joshua D. Angrist, Victor
Lavy, and Analia Schlosser on the causal



link between quantity and quality of
children in Israeli families (p. 127)

BLS Boston Latin School, the top school in
the Boston exam school hierarchy (p.
164)

C&B College and Beyond, a data set (p. 52)

CEF conditional expectation function, the
population average of Yi with Xi held
fixed (p. 82)

CLT Central Limit Theorem, a theorem
which says that almost any sample aver-
age is approximately normally distrib-
uted, with the accuracy of the approxim-
ation increasing as the sample size in-
creases (p. 39)

DD differences-in-differences, an economet-
ric tool that compares changes over time
in treatment and control groups (p. 178)
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HIE Health Insurance Experiment, a large
randomized trial conducted by the
RAND Corporation that provided
treated families with different types of
health insurance coverage (p. 16)

ITT intention-to-treat effect, the average
causal effect of an offer of treatment (p.
119)

IV instrumental variables, an econometric
tool used to eliminate omitted variables
bias or attenuation bias due to measure-
ment error (p. 98)

JTPA Job Training Partnership Act, an
American training program that in-
cluded a randomized evaluation (p. 122)

KIPP Knowledge Is Power Program, a net-
work of charter schools in the United
States (p. 99)
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LATE local average treatment effect, the av-
erage causal effect of treatment on com-
pliers (p. 109)

LIML limited information maximum likeli-
hood estimator, an alternative to two-
stage least squares with less bias (p. 145)

LLN Law of Large Numbers, a statistical law
according to which sample averages ap-
proach the corresponding population
average (expectation) as the sample size
grows (p. 13)

MDVE Minneapolis Domestic Violence Ex-
periment, a randomized evaluation of
policing strategies to combat domestic
violence (p. 116)

MLDA minimum legal drinking age (p. 148)

MVA motor vehicle accidents (p. 159)

NHIS National Health Interview Survey, a
data set (p. 3)
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OHP Oregon Health Plan, the Oregon ver-
sion of Medicaid, for which eligibility
was partly determined by a lottery (p.
25)

OLS ordinary least squares, the sample ana-
log of population regression coefficients;
we use OLS to estimate regression mod-
els (p. 58)

OVB omitted variables bias, the relationship
between regression coefficients in mod-
els with different sets of covariates (p.
69)

QOB quarter of birth (p. 229)

RD regression discontinuity design, an eco-
nometric tool used when treatment, the
probability of treatment, or average
treatment intensity is a known, discon-
tinuous function of a covariate (p. 147)
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RSS residual sum of squares, the expected
(population average of) squared resid-
uals in regression analysis (p. 86)

TOT treatment effect on the treated, the av-
erage causal effect of treatment in the
treated population (p. 114)

WLS weighted least squares, a regression
estimator that weights observations
summed in the RSS (p. 202)
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EMPIRICAL NOTES

Tables

Table 1.1 Health and demographic charac-
teristics of insured and uninsured couples in
the NHIS

Data source. The 2009 NHIS data are from
the Integrated Health Interview Series
(IHIS) and are available at www.ihis.us/
ihis/.

Sample. The sample used to construct this
table consists of husbands and wives

text/part0008.html#t1-1
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aged 26–59, with at least one spouse
working.

Variable definitions. Insurance status is
determined by the IHIS variable
UNINSURED. The health index is on a
five-point scale, where 1 = poor, 2 = fair,
3 = good, 4 = very good, 5 = excellent;
this comes from the variable HEALTH.
Education is constructed from the vari-
able EDUC and measures completed
years of schooling. High school gradu-
ates and GED holders are assigned 12
years of schooling. People with some
college but no degree, and those with an
associate’s degree, are assigned 14 years
of schooling. Bachelor’s degree holders
are assigned 16 years of schooling, and
holders of higher degrees are assigned
18 years of schooling. Employed indi-
viduals are those “working for pay” or
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“with job but not at work” as indicated
by the variable EMPSTAT.

Family income is constructed by as-
signing to each bracket of the IHIS in-
come variable (INCFAM07ON) the aver-
age household income for that bracket
based on data from the 2010 Current
Population Survey (CPS) March supple-
ment (using the CPS variable
FTOTVAL). The CPS sample used for
this purpose omits observations with
nonpositive household income as well as
observations with negative weights. CPS
income is censored at the 98th percent-
ile; values above the 98th percentile are
assigned 1.5 times the 98th percentile
value.

Additional table notes. All calculations
are weighted using the variable

604/694



PERWEIGHT. Robust standard errors
are shown in parentheses.

Table 1.3 Demographic characteristics and
baseline health in the RAND HIE

Data source. The RAND HIE data are from
Joseph P. Newhouse, “RAND Health In-
surance Experiment [in Metropolitan
and Non-Metropolitan Areas of the Un-
ited States], 1974–1982,”
ICPSR06439-v1, Inter-University Con-
sortium for Political and Social Re-
search, 1999. This data set is available at
http://doi.org/10.3886/
ICPSR06439.v1.

Sample. The sample used to construct this
table consists of adult participants (14
years old and older) with valid enroll-
ment, expenditure, and study exit data.
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Variable definitions. The demographic
variables in panel A and the health char-
acteristics in panel B are measured at
the experimental baseline. The general
health index rates the participant’s per-
ception of his or her general health at
the time of enrollment. Higher values
indicate more favorable self-ratings of
health; less health-related worry; and
greater perceived resistance to illness.
The mental health index rates the parti-
cipant’s mental health, combining meas-
ures of anxiety, depression, and
psychological well-being. Higher values
indicate better mental health. The edu-
cation variable measures number of
years of completed education and is only
defined for individuals 16 years and
older. Family income is in constant 1991
dollars.
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Additional table notes. Standard errors
in parentheses are clustered at the fam-
ily level.

Table 1.4 Health expenditure and health
outcomes in the RAND HIE

Data source. See note for Table 1.3.

Sample. See note for Table 1.3. The panel A
sample contains multiple observations
for the same person from a different
follow-up year.

Variable definitions. See notes for Table
1.3. Variables in panel A are constructed
from administrative claims data for each
year, and variables in panel B are meas-
ured upon exit from the experiment.
Face-to-face visits counts the number of
face-to-face visits with health profes-
sionals that were covered by insurance
(excluding dental, psychotherapy, and
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radiology/anaesthesiology/pathology-
only visits). Hospital admissions indic-
ates the total number of covered parti-
cipant hospitalizations, including ad-
missions for reasons of mental health.
The expenditure variables are in con-
stant 1991 dollars.

Additional table notes. Standard errors
in parentheses are clustered at the fam-
ily level.

Table 1.5 OHP effects on insurance cover-
age and health-care use

Sources. The numbers in columns (1) and
(2) are from Amy N. Finkelstein et al.,
“The Oregon Health Insurance Experi-
ment: Evidence from the First Year,”
Quarterly Journal of Economics, vol.
127, no. 3, August 2012, pages
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1057–1106. Our numbers come from the
original as follows:

▪ row (1) in panel A from row (1),
columns (1) and (2) in Table III;

▪ row (2) in panel A from row (1),
columns (1) and (2) in Table IV;

▪ row (1) in panel B from row (2),
columns (5) and (6) in Table V;
and

▪ row (2) in panel B from row (1),
columns (1) and (2) in Table V.

The numbers reported in columns (3)
and (4) are from Sarah L. Taubman et
al., “Medicaid Increases Emergency-De-
partment Use: Evidence from Oregon’s
Health Insurance Experiment,” Science,
vol. 343, no. 6168, January 17, 2014,
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pages 263–268. Our numbers come
from the original as follows:

▪ row (1) from row (1), columns (1)
and (2) in Table S7;

▪ row (3) from row (1), columns (3)
and (4) in Table S2;

▪ row (4) from row (1), columns (7)
and (8) in Table S2.

Samples. Columns (1) and (2) in panel A
use the full sample analyzed in the hos-
pital discharge and mortality data in
Finkelstein et al. (2012). Columns (3)
and (4) in panel A are drawn from the
emergency department records of 12
Portland area emergency departments
for visits occurring between March 10,
2008 and September 30, 2009. Panel B
uses the follow-up survey data analyzed
in Finkelstein et al. (2012).
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Variable definitions. The variable in row
(1) in panel A is a dummy for Medicaid
enrollment in the study period (from
lottery notification through the end of
September 2009), obtained from Medi-
caid administrative data. The variable in
row (2) in panel A is a dummy equal to 1
if the respondent had a non-childbirth
hospitalization from notification until
the end of August 2009. The variables in
rows (3) and (4) in panel A indicate any
emergency department visit and count
the number of such visits. The variable
in row (1) in panel B measures the num-
ber of non-childbirth-related outpatient
visits in the past 6 months. The variable
in row (2) in panel B is a dummy for
whether the patient had a prescription
drug at the time of the survey.
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Additional table notes. Standard errors
in parentheses are clustered at the
household level.

Table 1.6 OHP effects on health indicators
and financial health

Sources. See notes for Table 1.5. The num-
bers in row (1) in panel A in this table
are obtained from row (2), columns (1)
and (2) in Table IX in Finkelstein et al.
(2012). The numbers reported in
columns (3) and (4) are from Katherine
Baicker et al., “The Oregon Experi-
ment—Effects of Medicaid on Clinical
Outcomes,” New England Journal of
Medicine, vol. 368, no. 18, May 2, 2013,
pages 1713–1722.

The numbers in columns (3) and (4)
come from columns (1) and (2) in the
original as follows:
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▪ row (2) in panel A from row (3) in
Table S2;

▪ row (3) in panel A from row (2) in
Table S2;

▪ row (4) in panel A from row (6) in
Table S1;

▪ row (5) in panel A from row (1) in
Table S1;

▪ row (1) in panel B from row (3) in
Table S3; and

▪ row (2) in panel B from row (4) in
Table S3.

We thank Amy Finkelstein and
Allyson Barnett for providing unpub-
lished standard errors for estimates
from Baicker et al. (2013).

Samples. Columns (1) and (2) use the
sample from the (first) follow-up survey
analyzed in Finkelstein et al. (2012).
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Columns (3) and (4) use the sample
from the (second) follow-up survey ana-
lyzed in Baicker et al. (2013).

Variable definitions. The variable in row
(1) in panel A is a dummy for whether
the respondent rated his or her health as
good, very good, or excellent (as com-
pared to fair or poor). Rows (2) and (3)
in panel A contain the SF-8 physical and
mental component scores. Higher SF-8
scores indicate better health. The scale
is normalized to have a mean of 50 and
standard deviation of 10 in the U.S. pop-
ulation; the range is 0 to 100. See pages
14–16 of the appendix of Baicker et al.
(2013) for descriptions of the subjective
and clinical measures of health used in
rows (2)–(5). The variable in row (1) in
panel B is a dummy for whether health
expenditures surpassed 30% of total
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income in the past 12 months. The vari-
able in row (2) in panel B is a dummy
for whether the respondent had any
medical debt at the time of the survey.

Additional table notes. Standard errors
in parentheses are clustered at the
household level.

Table 2.2 Private school effects: Barron’s
matches

Data sources. The data used to construct
this table are described in Stacy Berg
Dale and Alan B. Krueger, “Estimating
the Payoff to Attending a More Selective
College: An Application of Selection on
Observables and Unobservables,”
Quarterly Journal of Economics, vol.
117, no. 4, November 2002, pages
1491–1527.
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These data are from the College and
Beyond (C&B) survey linked to a survey
administered by Mathematica Policy Re-
search, Inc., in 1995–1997 and to files
provided by the College Entrance Exam-
ination Board and the Higher Education
Research Institute (HERI) at the
University of California, Los Angeles.
The college selectivity category is as de-
termined by Barron’s Profiles of Amer-
ican Colleges 1978, Barron’s Education-
al Series, 1978.

Sample. The sample consists of people from
the 1976 college entering cohort who ap-
pear in the C&B survey and who were
full-time workers in 1995. The analysis
excludes students from historically black
universities (Howard University, More-
house College, Spellman College, and
Xavier University; see pages 1500–1501
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in Dale and Krueger (2002) for details).
The sample is further restricted to ap-
plicant selectivity groups containing
some students who attended public uni-
versities and some students who atten-
ded private universities.

Variable definitions. The dependent vari-
able is the log of pretax annual earnings
in 1995. The question in the C&B survey
has 10 income brackets; see footnote 8
on pages 1501–1502 in Dale and
Krueger (2002) for exact construction of
the earnings variable. The applicant
group variable is formed by matching
students according to the list of categor-
ies of schools where they applied and
were accepted or rejected (from the C&B
survey), where school categories are
based on the Barron’s college selectivity
measure (see pages 1502–1503 in Dale
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and Krueger (2002) for more on this).
The variable own SAT score/100 meas-
ures the respondent’s SAT score divided
by 100. See page 1508 in Dale and
Krueger (2002) for the definition of the
parental income variable (this is im-
puted using parental occupation and
schooling). Variables female, black, His-
panic, Asian, other/missing race, high
school top 10%, high school rank miss-
ing, and athlete are dummies.

Additional table notes. Regressions are
weighted to make the sample represent-
ative of the population of students at
C&B institutions (see page 1501 in Dale
and Krueger (2002) for details). Stand-
ard errors in parentheses are clustered
at the level of school attended.

Table 2.3 Private school effects: Average
SAT score controls
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Data sources. See notes for Table 2.2.

Sample. See notes for Table 2.2. The
sample used to construct this table con-
tains all C&B students and not just those
with Barron’s selectivity group matches.

Variable definitions. See notes for Table
2.2. The variable average SAT score of
schools applied to/100 is constructed as
follows: the average SAT score (divided
by 100) is computed for each university
using HERI data and then averaged over
the universities where each respondent
applied.

Additional table notes. Regressions are
weighted to make the sample represent-
ative of the population of students at
C&B institutions. Standard errors in
parentheses are clustered at the uni-
versity level.
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Table 2.4 School selectivity effects: Average
SAT score controls

Data sources. See notes for Table 2.2.

Sample. See notes for Table 2.3.

Variable definitions. See notes for Table
2.3. The variable school average SAT
score/100 is the average SAT score (di-
vided by 100) of the students at the
school the respondent attended.

Additional table notes. See notes for
Table 2.3.

Table 2.5 Private school effects: Omitted
variables bias

Data sources. See notes for Table 2.2.

Sample, variable definitions, and addi-
tional table notes. See notes for Table
2.3.

620/694

text/part0009.html#t2-4
text/part0009.html#t2-2
text/part0009.html#t2-3
text/part0009.html#t2-3
text/part0009.html#t2-3
text/part0009.html#t2-3
text/part0009.html#t2-5
text/part0009.html#t2-2
text/part0009.html#t2-3
text/part0009.html#t2-3


Table 3.1 Analysis of KIPP lotteries

Data sources. Demographic information
on students in Lynn public schools is
from the Massachusetts Student In-
formation Management System. Demo-
graphic and lottery information for
KIPP applicants is from KIPP Lynn
school records. Scores are from the Mas-
sachusetts Comprehensive Assessment
System (MCAS) tests in math and Eng-
lish language arts. For details, see
Joshua D. Angrist et al., “Who Benefits
from KIPP?” Journal of Policy Analysis
and Management, vol. 31, no. 4, Fall
2012, pages 837–860.

Sample. The sample in column (1) contains
students who attended fifth grade in
Lynn public schools between fall 2005
and spring 2008. The samples in
columns (2)–(5) are drawn from the set
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of KIPP Lynn applicants for fifth- and
sixth-grade entry in the same period.
Applicants with siblings already enrolled
in KIPP or who went directly onto the
waiting list are excluded (see footnote 14
in Angrist et al. (2012)). Lottery com-
parisons are limited to the 371 applic-
ants with follow-up data.

Variable definitions. Hispanic, black, fe-
male, free/reduced-price lunch, and en-
rolled at KIPP are dummy variables. The
math and verbal scores for students in a
given grade are standardized with re-
spect to the reference population of all
students in Massachusetts in that grade.
Baseline scores are from fourth-grade
tests. Outcome scores are from the
grades following the application grade,
specifically, fifth-grade scores for those
who applied to KIPP when they were in
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fourth grade and sixth grade scores for
those who applied to KIPP while in fifth.

Additional table notes. Robust standard
errors are reported in parentheses.

Table 3.3 Assigned and delivered treat-
ments in the MDVE

Data sources. The numbers reported in
this table are from Table 1 in Lawrence
W. Sherman and Richard A. Berk, “The
Specific Deterrent Effects of Arrest for
Domestic Assault,” American Sociolo-
gical Review, vol. 49, no. 2, April 1984,
pages 261–272.

Table 3.4 Quantity-quality first stages

Data sources. The data used to construct
this table are from the 20% public-use
microdata samples from the 1983 and
1995 Israeli Censuses, linked with
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nonpublic information on parents and
siblings from the population registry.
For details, see Joshua D. Angrist, Vict-
or Lavy, and Analia Schlosser, “Multiple
Experiments for the Causal Link
between the Quantity and Quality of
Children,” Journal of Labor Economics,
vol. 28, no. 4, October 2010, pages
773–824.

Sample. The sample includes Jewish, first-
born non-twins aged 18–60. The sample
is restricted to individuals whose moth-
ers were born after 1930 and who had
their first birth between the ages of 15
and 45.

Variable definitions. The twins
instrument (second-born twins) is a
dummy variable equal to 1 in families
where the second birth produces twins.
The sex-mix instrument (same sex) is a
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dummy variable equal to 1 if the second
and first born are same-sex.

Additional table notes. In addition to a
dummy for males, additional covariates
are dummies for census year, parents’
ethnicities (Asian or African origin, from
the former Soviet Union, from Europe
or America), and missing month of
birth; age, mother’s age, mother’s age at
first birth, and mother’s age at immigra-
tion (where relevant). The first stages in
this table go with the second-stage es-
timates in the first two rows of Table
3.5. Robust standard errors are reported
in parentheses.

Table 3.5 OLS and 2SLS estimates of the
quantity-quality trade-off

Data sources. See notes for Table 3.4.
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Sample. See notes for Table 3.4. Estimates
in the third and fourth rows of the table
are limited to subjects aged 24–60 at
the time of the census. The college
graduation outcome has a few additional
missing values.

Variable definitions. See notes for Table
3.4. The dependent variables in the
second, third, and fourth rows are
dummy variables.

Additional table notes. Covariates are lis-
ted in the notes for Table 3.4.

Table 4.1 Sharp RD estimates of MLDA ef-
fects on mortality

Data sources. Mortality data are from the
National Center for Health Statistics
(NCHS) confidential mortality detail
files for 1997–2004. These data are de-
rived from death certificates and cover
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all deaths in the United States in the
study period. Population estimates in
the denominator are from the
1970–1990 U.S. Censuses. For details,
see pages 166–169 of Christopher Car-
penter and Carlos Dobkin, “The Effect of
Alcohol Consumption on Mortality:
Regression Discontinuity Evidence from
the Minimum Drinking Age,” American
Economic Journal—Applied Economics,
vol. 1, no. 1, January 2009, pages
164–182.

Sample. The sample is restricted to fatalit-
ies of young adults aged 19–22. The data
used here consist of averages in 48 cells
defined by age in 30-day intervals.

Variable definitions. Cause of death is re-
ported on death certificates in the NCHS
data. Causes are divided into internal
and external, with the latter split into
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mutually exclusive subcategories: hom-
icide, suicide, motor vehicle accidents,
and other external causes. A separate
category for alcohol-related causes cov-
ers all deaths for which alcohol was
mentioned on the death certificate. Out-
comes are mortality rates per 100,000,
where the denominator comes from
census population estimates.

Additional table notes. Robust standard
errors are reported in parentheses.

Table 5.1 Wholesale firm failures and sales
in 1929 and 1933

Source. Numbers in this table are from
Table 8 (page 1066) in Gary Richardson
and William Troost, “Monetary Inter-
vention Mitigated Banking Panics dur-
ing the Great Depression: Quasi-Experi-
mental Evidence from a Federal Reserve
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District Border, 1929–1933,” Journal of
Political Economy, vol. 117, no. 6,
December 2009, pages 1031–1073.

Data sources. Data are from the 1935
Census of American Business, as com-
piled by Richardson and Troost (2009).

Table 5.2 Regression DD estimates of
MLDA effects on death rates

Data sources. MLDA provisions by state
and year are from “Minimum Purchase
Age by State and Beverage,
1933–Present,” DISCUS (Distilled Spir-
its Council of the US), 1996; Alexander
C. Wagenaar, “Legal Minimum Drinking
Age Changes in the United States:
1970–1981,” Alcohol Health and Re-
search World, vol. 6, no. 2, Winter
1981–1982, pages 21–26; and William
Du Mouchel, Allan F. Williams, and
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Paul Zador, “Raising the Alcohol
Purchase Age: Its Effects on Fatal Motor
Vehicle Crashes in Twenty-Six States,”
Journal of Legal Studies, vol. 16, no. 1,
January 1987, pages 249–266. We fol-
low the coding of these laws implemen-
ted in Karen E. Norberg, Laura J. Bierut,
and Richard A. Grucza, “Long-Term Ef-
fects of Minimum Drinking Age Laws on
Past-Year Alcohol and Drug Use
Disorders,” Alcoholism: Clinical and
Experimental Research, vol. 33, no. 12,
September 2009, pages 2180–2190, cor-
recting minor coding errors.

Mortality information comes from the
Multiple Cause-of-Death Mortality Data
available from the National Vital Statist-
ics System of the National Center for
Health Statistics, obtained from
www.nber.org/data/mortality-
data.html. Population data are from the
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U.S. Census Bureau’s intercensal popu-
lation estimates available online. See:

▪ http://www.census.gov/popest/
data/state/asrh/pre-1980/
tables/e7080sta.txt;

▪ http://www.census.gov/popest/
data/state/asrh/1980s/
80s_st_age_sex.html; and

▪ http://www.census.gov/popest/
data/state/asrh/1990s/
st_age_sex.html.

Sample. The data set used to construct
these estimates contains death rates of
18–20-year-olds between 1970 and 1983
by state and year.

Variable definitions. The mortality rate
measures the number of 18–20-year-
olds who died in a given state and year
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(per 100,000), by cause of death (all
deaths, motor vehicle accidents, suicide,
and all internal causes). The MLDA re-
gressor measures the fraction of
18–20-year-olds who are legal drinkers
in a given state and year. This fraction is
calculated using MLDA change dates in
each state and accounts for grandfather-
ing clauses. The calculation assumes
that births are distributed uniformly
throughout the year.

Additional table notes. Regressions in
columns (3) and (4) are weighted by
state population aged 18–20. Standard
errors in parentheses are clustered at
the state level.

Table 5.3 Regression DD estimates of
MLDA effects controlling for beer taxes
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Data sources. See notes for Table 5.2. Beer
tax data are from Norberg et al., “Long-
Term Effects,” Alcoholism: Clinical and
Experimental Research, 2009.

Sample. See notes for Table 5.2.

Variable definitions. See notes for Table
5.2. The beer tax is measured in con-
stant 1982 dollars per gallon.

Additional table notes. See notes for
Table 5.2.

Table 6.2 Returns to schooling for Twins-
burg twins

Data sources. The twins data are detailed
in Orley Ashenfelter and Cecilia Rouse,
“Income, Schooling, and Ability: Evid-
ence from a New Sample of Identical
Twins,” Quarterly Journal of Econom-
ics, vol. 113, no. 1, February 1998, pages
253–284. These data are available at
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http://dataspace.princeton.edu/jspui/
handle/88435/dsp01xg94hp567. This
includes data used in Orley Ashenfelter
and Alan B. Krueger, “Estimates of the
Economic Returns to Schooling from a
New Sample of Twins,” American Eco-
nomic Review, vol. 84, no. 5, December
1994, pages 1157–1173.

Sample. The sample consists of 680 twins
who were interviewed at the Twinsburg
Twins Festival in 1991, 1992, and 1993.
The sample is restricted to U.S.-resident
twins who have been employed in the 2
years preceding the interview.

Variable definitions. Estimates in this
table were constructed using self-repor-
ted years of education and sibling re-
ports, defined as an individual’s report
of the number of years of education at-
tained by his or her twin sibling.
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Additional table notes. Robust standard
errors are reported in parentheses.

Table 6.3 Returns to schooling using child
labor law instruments

Data sources. The data used to construct
this table are detailed in Daron Acemo-
glu and Joshua D. Angrist, “How Large
Are Human-Capital Externalities? Evid-
ence from Compulsory-Schooling Laws,”
in Ben S. Bernanke and Kenneth Rogoff
(editors), NBER Macroeconomics An-
nual 2000, vol. 15, MIT Press, 2001,
pages 9–59.

Sample. The sample consists of U.S.-born
white men aged 40–49, interviewed in
U.S. censuses from 1950 through 1990.
The sample was drawn from the integ-
rated public use micro data samples
(IPUMS) for these censuses.

635/694

text/part0013.html#t6-3


Variable definitions. The dependent vari-
able is the log weekly wage. The school-
ing variable is top-coded at 17. The 1990
Census schooling variable is partly im-
puted using categorical means from oth-
er sources. The child labor law instru-
ments are dummies indicating the
schooling required before work was al-
lowed in the respondent’s state of birth,
according to laws in place at the time
the respondent was 14 years old. For de-
tails, see pages 22–28 and Appendix B
in Acemoglu and Angrist (2001).

Additional table notes. All regressions
are weighted using the IPUMS weight-
ing variable. Standard errors in paren-
theses are clustered at the state level.

Table 6.4 IV recipe for an estimate of the
returns to schooling using a single quarter of
birth instrument
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Data sources. The data used to construct
this table are detailed in Joshua D. An-
grist and Alan B. Krueger, “Does Com-
pulsory School Attendance Affect
Schooling and Earnings?” Quarterly
Journal of Economics, vol. 106, no. 4,
November 1991, pages 979–1014.

Sample. The sample consists of men born
between 1930 and 1939 in the 1980 U.S.
Census 5% public use sample. Observa-
tions with allocated values were ex-
cluded from the analysis, as were re-
spondents who reported no wage in-
come or no weeks worked in 1979. See
pages 1011–1012 in Appendix 1 in An-
grist and Krueger (1991).

Variable definitions. Log weekly wages in
1979 are computed by dividing annual
earnings by weeks worked. The
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schooling variable is the highest grade
completed.

Additional table notes. Robust standard
errors are reported in parentheses.

Table 6.5 Returns to schooling using altern-
ative quarter of birth instruments

Data sources, sample, variable defini-
tions, and additional table notes.
See notes for Table 6.4.

Figures

Figure 2.1 The CEF and the regression line

Source. This is Figure 3.1.2 on page 39 in
Joshua D. Angrist and Jörn-Steffen Pis-
chke, Mostly Harmless Econometrics:
An Empiricist’s Companion, Princeton
University Press, 2009.

Sample. See notes for Table 6.4.
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Variable definitions. The dependent vari-
able is the log weekly wage. The school-
ing variable is the highest grade
completed.

Figure 3.1 Application and enrollment data
from KIPP Lynn lotteries

Data sources. See notes for Table 3.1.

Sample. The KIPP data set analyzed here
contains first-time applicants for fifth-
and sixth-grade seats in 2005–2008.
This sample contains 446 applicants
and includes some applicants without
follow-up data.

Figure 3.2 IV in school: the effect of KIPP
attendance on math scores

Data sources. See notes for Table 3.1.

Sample. The sample here matches that in
column (3) of Table 3.1.
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Figure 4.1 Birthdays and funerals

Source. This figure is from Appendix A of
Christopher Carpenter and Carlos Dob-
kin, “The Effect of Alcohol Consumption
on Mortality: Regression Discontinuity
Evidence from the Minimum Drinking
Age,” American Economic Journal—Ap-
plied Economics, vol. 1, no. 1, January
2009, pages 164–182.

Additional figure notes. The figure plots
the number of deaths in the United
States between 1997 and 2003 by age in
days measured relative to birthdays.

Figure 4.2 A sharp RD estimate of MLDA
mortality effects

Data sources and sample. See notes for
Table 4.1.

Variable definitions. See notes for Table
4.1. The Y-axis measures mortality (per
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100,000) from all causes. Averages in
the figure are for 48 cells defined by age
in 30-day intervals.

Figure 4.4 Quadratic control in an RD
design

Data sources, sample, and variable
definitions. See notes for Table 4.1.

Additional figure notes. See notes for
Figure 4.2.

Figure 4.5 RD estimates of MLDA effects
on mortality by cause of death

Data sources and sample. See notes for
Table 4.1.

Variable definitions. See notes for Table
4.1. The Y-axis measures mortality rates
per 100,000 population by cause of
death. These are averages for 48 cells
defined by age in 30-day intervals.
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Additional figure notes. See notes for
Figure 4.2.

Figure 4.6 Enrollment at BLS

Data sources. This figure uses Boston
Public Schools (BPS) data on exam
school applications, including informa-
tion on Independent School Entrance
Exam (ISEE) scores, school enrollment
status between 1999 and 2008, and
MCAS scores from school years 1999/
2000 through 2008/2009. For details,
see pages 142–143 and appendix C in
the supplement to Atila Abdulkadiroglu,
Joshua D. Angrist, and Parag Pathak,
“The Elite Illusion: Achievement Effects
at Boston and New York Exam Schools,”
Econometrica, vol. 81, no. 1, January
2014, pages 137–196. The supplement is
available at
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http://www.econometricsociety.org/ec-
ta/supmat/
10266_data_description.pdf.

Sample. The sample includes BPS-enrolled
students who applied to Boston Latin
School (BLS) for seventh grade seats
from 1999 to 2008. The sample is re-
stricted to students for whom BLS is
either a first choice or a top choice after
eliminating schools where the student
didn’t qualify.

Variable definitions. The running vari-
able, labeled “entrance exam score” in
the figure, is a weighted average of ap-
plicants’ ISEE total score and GPA.
Exam school enrollment is measured us-
ing data from the school year following
application.

Additional figure notes. Running vari-
able values in the figure were
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normalized by subtracting the lowest
score offered a seat at BLS in a given
year, so that the cutoff for each year is 0.
The smoothed lines in the figures are fit-
ted values from regression models es-
timated with data near each point.
These models regress the dependent
variable on the running variable for ob-
servations with values inside a nonpara-
metric bandwidth. See Abdulkadiroglu
et al. (2014) for details.

Figure 4.7 Enrollment at any Boston exam
school

Data sources, sample, and additional
figure notes. See notes for Figure 4.6.

Variable definitions. See notes for Figure
4.6. Enrollment at any exam school in-
dicates whether an applicant enrolled at
Boston Latin School, Boston Latin
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Academy, or the John D. O’Bryant High
School of Mathematics and Science.

Figure 4.8 Peer quality around the BLS
cutoff

Data sources, sample, and additional
figure notes. See notes for Figure 4.6.

Variable definitions. See notes for Figure
4.6. For each exam school applicant,
peer quality is the average of the fourth-
grade MCAS math scores of his or her
schoolmates in seventh grade, at any
school he or she attended in that grade.

Figure 4.9 Math scores around the BLS
cutoff

Data sources, sample, and additional
figure notes. See notes for Figure 4.6.

Variable definitions. See notes for Figure
4.6. The variable on the Y-axis here is
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the average of seventh- and eighth-
grade MCAS math scores.

Figure 4.10 Thistlethwaite and Campbell’s
Visual RD

Source. This is Figure 3 in Donald L.
Thistlethwaite and Donald T. Campbell,
“Regression-Discontinuity Analysis: An
Alternative to the ex post facto Experi-
ment,” Journal of Educational Psycho-
logy, vol. 51, no. 6, December 1960,
pages 309–317.

Sample. The sample contains 5,126 near
winners and 2,848 near losers of a Cer-
tificate of Merit in the 1957 National
Merit Scholarship competition. The run-
ning variable is the score on the College
Entrance Examination Board’s Scholar-
ship Qualifying Test, now known as the
PSAT. The two outcome measures come
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from a survey administered to all stu-
dents in the sample approximately 6
months after awards were announced.

Variable definitions. The two outcome
variables are dummies for whether a
student plans to do 3 or more years of
graduate study (plotted as line I–I′), and
whether a student plans to be a college
teacher or a scientific researcher (plot-
ted as line J–J′).

Figure 5.1 Bank failures in the Sixth and
Eighth Federal Reserve Districts

Data sources. Daily data on the number of
banks operating in Mississippi were
compiled by Gary Richardson and Willi-
am Troost and are described on pages
1034–1038 of Gary Richardson and Wil-
liam Troost, “Monetary Intervention
Mitigated Banking Panics during the
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Great Depression: Quasi-Experimental
Evidence from a Federal Reserve Dis-
trict Border, 1929–1933,” Journal of
Political Economy, vol. 117, no. 6,
December 2009, pages 1031–1073.

Sample. The bank operations data count all
national and state chartered banks in
Mississippi, summed within Federal
Reserve Districts and in operation on
July 1, 1930, and July 1, 1931.

Variable definitions. The Y-axis shows
the number of banks open for business
on July 1 of a given year in a given
district.

Figure 5.2 Trends in bank failures in the
Sixth and Eighth Federal Reserve Districts

Data sources. See notes for Figure 5.1.

Sample. The bank operations data count all
national and state chartered banks in
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Mississippi, summed within Federal
Reserve Districts, in operation between
July 1929 and July 1934.

Variable definitions. See notes for Figure
5.1.

Figure 5.3 Trends in bank failures in the
Sixth and Eighth Federal Reserve Districts,
and the Sixth District’s DD counterfactual

Data sources and variable definitions.
See notes for Figure 5.1. Sample. See
notes for Figure 5.2.

Figure 5.7 John Snow’s DD recipe

Source. This is Table XII (on page 90) in
John Snow, On the Mode of Communic-
ation of Cholera, second edition, John
Churchill, 1855.

Figure 6.1 The quarter of birth first stage
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Data sources, sample, and variable
definitions. See notes for Table 6.4.

Figure 6.2 The quarter of birth reduced
form

Data sources, sample, and variable
definitions. See notes for Table 6.4.

Figure 6.3 Last-chance exam scores and
Texas sheepskin

Data sources. This figure was constructed
using a data set linking administrative
high school records, administrative
post-secondary schooling records, and
unemployment insurance earnings re-
cords from Texas. These data are de-
tailed on pages 288–289 of Damon
Clark and Paco Martorell, “The Signal-
ing Value of a High School Diploma,”
Journal of Political Economy, vol. 122,
no. 2, April 2014, pages 282–318.
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Sample. The sample consists of five cohorts
of seniors taking their last-chance high
school exit exam in spring 1993–1997.
Earnings data are available through
2004, namely, for a period running from
7 to 11 years after the time of the last-
chance exam.

Variable definitions. The running vari-
able on the X-axis measures the score on
the last-chance exam, centered around
the passing score. Because the exit exam
tests multiple subjects and students
must pass all to graduate, scores are
normalized relative to passing
thresholds and the running variable is
given by the minimum of these normal-
ized scores. The Y axis plots the probab-
ility of diploma receipt conditional on
each score value.
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Figure 6.4 The effect of last-chance exam
scores on earnings

Data sources and sample. See notes for
Figure 6.3.

Variable definitions. The running vari-
able on the X-axis is as in Figure 6.3.
The Y-axis measures average annual
earnings including zeros for those not
working conditional on each score value.
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Bound, John, 233n
British Navy, 31
Brook, Robert H., 17n, 24n
Buckles, Kasey, 233, 233n
busing, 174

C&B (College and Beyond data set), 52,
59–60, 69

Caldwell, Rogers, 178–79
Caldwell and Company, 178–79, 182, 186
Campbell, Donald T., 175–77, 176n, 177n
Carnoy, Martin, 100n
Carpenter, Christopher, 148n, 164n, 192n
causal effect, 6–8. See also average causal ef-

fect; intention-to-treat effect; local average
treatment effect; treatment effect on the
treated

causal inference, 30, 47, 49
CEF (conditional expectation function),

82–85, 83f
central bank. See Federal Reserve
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Central Limit Theorem (CLT), 39–41
ceteris paribus comparison: causal inference

and, xii–xv; in regression, 48–51, 68–74.
See also selection bias

charter school lotteries, 101–2; instrumental
variables analysis of, 101–15, 104t

charter schools: debates on, 99–101; defini-
tion of, 99; instructional approaches of,
99–100, 115; KIPP, 99–115; test scores in,
103–6, 104t, 1089, 108f

checking for balance, 16, 19–22, 103
Chen, Shaohua, 124n
child labor laws, 224, 225, 226t
children: school starting ages of, 228–29,

234; sibling sex composition of, 129–31,
134–38, 135t, 137t. See also charter
schools; education; family size; minority
students; twins; types of children

China, One Child Policy in, 124
cholera, 204–5, 206f
Clark, Damon, 235–36, 235n
Clark, Kelly, 140–41, 141n
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CLT (Central Limit Theorem), 39–41
clustered standard error, 207–8
Coale, Ansley, 125n
College and Beyond (C&B) data set, 52,

59–60, 69
college: financial aid for, xiii, 49; private vs.

public, 47–78. See also education
common trends assumption, 184–87; relax-

ing, 196–200
comparison group. See control group
compliance, in randomized trials, 118–22
compliers, 102, 111–14
compulsory schooling laws, 223–28
conditional expectation function (CEF),

82–85, 83f
conditional expectation, 15–16, 82
confidence interval, 43, 45, 46
constant-effects assumption, 10
control group: checking for balance, 16,

19–22, 103; definition of, 3. See also ran-
dom assignment
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control variable: bad, 214–17; definition of,
56–57; good, 217; in two-stage least
squares, 133–34. See also omitted vari-
ables bias

Cook, Thomas D., 177, 177n
correlation, serial, 205–7
covariance, 86–87. See also variance
covariates, 89–93, 221, 232, 242–43

Dale, Stacy Berg, 51, 51n, 52, 68, 68n
Daniel, Book of, 30–31
Darwin, Charles, 79–80
DD. See differences-in-differences
death rate. See mortality rate
defiers, 112–13
demand curve, 139–40
demographic characteristics, 19–21, 20t
demographic transition, 125n. See also fam-

ily size
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dependent variable: definition of, 56–57; fit-
ted values, 87–88; logged, 60, 93–94. See
also outcome

differences-in-differences (DD): bank fail-
ures example, 180–91; common trends as-
sumption in, 184–86, 196–97; counterfac-
tual, 184–86, 186f; minimum legal drink-
ing age example, 192–201, 196t; monetary
policy example, 180–91; regression models
for, 187–89, 192–201; returns to education
estimates, 224–27, 226t; standard errors
for, 205–8; state effects in, 193–95; with
state-specific trends, 196–200, 198f, 199f;
time effects in, 193, 193n

distribution: standard normal, 39, 40f, 41; of
variables, 36

Dobkin, Carlos, 148n, 164n, 192n
domestic violence. See Minneapolis Domest-

ic Violence Experiment; spousal abuse
drinking. See alcohol; minimum legal drink-

ing age
drunk driving. See motor vehicle accidents
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Duflo, Esther, 18n
dummy variable, 9, 15, 57, 61, 62, 88–89,

90–91

earnings: gender differences in, 50; poten-
tial, 214, 223; years of work experience
and, 211, 211n. See also education, returns
to

economic growth, 123–24
education: achievement gap in, 100, 169;

charter schools, 99–101; college quality
47–68; desegregation of, 173–74; family
size and, 125–38; National Merit Scholar-
ship program, 175–76, 177f; peer quality
in, 168–73, 168f, 172f; school assignment
policies, 169; selective exam schools,
164–69, 170–74; student debt, xii–xiii;
university tuition, 47–48, 49. See also
education, returns to

education, returns to: ability bias and,
212–14, 217–19; compulsory schooling
laws and, 223–27, 226t; conditional
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expectation function, 82, 83f, 84–85; con-
trolling for ability, 212–14, 217; controlling
for occupation, 214–17, 216t; controlling
for work experience, 210, 211, 217n; degree
effects in, 235–38, 237f; differences-indif-
ferences estimates of, 224–27, 226t; in-
strumental variables estimates of, 223–34,
226t, 231t, 232t; measurement error and,
219–22, 234; opportunity costs and, 235;
panel estimates of, 217–22, 220t; quarter
of birth and, 228–34, 230f, 231t, 232t; re-
gression estimates of, 210–17, 218–21,
225–26, 232; sheepskin effects in,
235–38, 237f; for twins, 217–22, 220t

educational attainment: health status and,
4–6; high school graduation, 236–38,
237f; of mothers, 233–34; by quarter of
birth, 229, 230f, 231, 231t; sheepskin ef-
fects, 235–38, 237f; sibling sex composi-
tion and, 130; of women, 125, 129n,
233–34

Ehrlich, Paul, 123, 124
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Einav, Liran, 17n, 18n
Elder, Todd, 78n
Ellement, John R., 51n
employment. See earnings; occupations
English Poor Laws, 81
epidemiology, 204–5
error. See measurement error; standard

error
error term. See residuals
estimated standard error, 38–39, 45. See

also standard error
estimator: definition of, 35; unbiased, 35
eugenics, 32, 79–80
Evans, William, 130, 130n
exclusion restriction, 101–2, 107, 120,

130–131
expectation: conditional, 15–16, 82; math-

ematical, 14, 34–35
external validity, 114–15

family planning, 124–25, 125n
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family size: ALS study, 127–30, 135–36; chil-
dren’s human capital and, 125–38; college
choice and, 69–74; living standards and,
124–25; reductions in, 124–25, 125n; sib-
ling sex composition and, 129–31, 134–38,
135t, 137t

Federal Reserve: Eighth District, 181–91,
184f, 185f, 186f; monetary policy of,
180–91; Sixth District, 181–91, 184f, 185f,
186f

Federal Reserve Banks: Atlanta, 181–91; St.
Louis, 181–91

fertility. See family planning; family size
field experiment: instrumental variables

analysis of, 118–22; Minneapolis Domestic
Violence Experiment, 116–22, 117t; RAND
Health Insurance Experiment, 16–24, 18n,
20t, 23t, 29–30, 33–34. See also random-
ized trial

financial aid, xiii, 49
financial crisis: moral hazard in, 181; similar-

ities among, 180. See also banks

667/694

text/part0010.html#page_127
text/part0010.html#page_130
text/part0010.html#page_135
text/part0010.html#page_136
text/part0010.html#page_125
text/part0010.html#page_138
text/part0009.html#page_69
text/part0009.html#page_74
text/part0010.html#page_124
text/part0010.html#page_125
text/part0010.html#page_124
text/part0010.html#page_125
text/part0010.html#page_125
text/part0010.html#page_129
text/part0010.html#page_131
text/part0010.html#page_134
text/part0010.html#page_138
text/part0010.html#page_135
text/part0010.html#page_137
text/part0012.html#page_181
text/part0012.html#page_191
text/part0012.html#page_184
text/part0012.html#page_185
text/part0012.html#page_186
text/part0012.html#page_180
text/part0012.html#page_191
text/part0012.html#page_181
text/part0012.html#page_191
text/part0012.html#page_184
text/part0012.html#page_185
text/part0012.html#page_186
text/part0012.html#page_181
text/part0012.html#page_191
text/part0012.html#page_181
text/part0012.html#page_191
text/part0017.html#ind_133
text/part0017.html#ind_134
text/part0010.html#page_118
text/part0010.html#page_122
text/part0010.html#page_116
text/part0010.html#page_122
text/part0010.html#page_117
text/part0008.html#page_16
text/part0008.html#page_24
text/part0008.html#page_18
text/part0008.html#page_20
text/part0008.html#page_23
text/part0008.html#page_29
text/part0008.html#page_30
text/part0008.html#page_33
text/part0008.html#page_34
text/part0017.html#ind_308
text/part0017.html#ind_308
text/part0006.html#page_xiii
text/part0009.html#page_49
text/part0012.html#page_181
text/part0012.html#page_180
text/part0017.html#ind_32


finite sample bias of 2SLS, 145–46
Finkelstein, Amy, 17n, 18n, 25, 25n
first stage, instrumental variables, 103f,

106–7, 109, 110, 112, 113, 118–19, 129; in
fuzzy regression discontinuity design,
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Orr, Larry L., 122n
outcome: definition of, 3; observed, 6–8; po-

tential, 6–8, 214; pretreatment, 21–22;
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variable 56, 70, 109. See also dependent
variable

OVB. See omitted variables bias

panel data, 195, 205
parallel trends. See common trends

assumption
parameter, 10, 34–35
parametric regression discontinuity design,

160
Pathak, Parag, 167n
path analysis, 140
Pearson, Karl, 80
peer effects in education, 65, 68, 165,

168–73, 168f, 172f
Peirce, Charles S., 31, 31n
Pingle, Robert, 115
Pischke, Jörn-Steffen, 59n, 80, 84n, 122n,

208n. See also Master Stevefu
Plato, 165
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police. See Minneapolis Domestic Violence
Experiment

pooled sample standard deviation, 45
population average. See mathematical

expectation
population growth, 123–24. See also family

size
population mean. See mathematical

expectation
population parameter, 10, 34–35
population standard deviation, 36
population variance, 36, 37
population weighting, 202–3
potential experience, 210, 211, 217n
potential outcome, 6–8, 214
poverty: children in, 100, 101; English Poor

Laws, 81; residential segregation by, 169.
See also living standards; Medicaid

price elasticity of demand: for health care,
17; identification, 139

probability, 34
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public education. See charter schools;
education

QOB. See quarter of birth
quantity-quality trade-off. See family size
quarter of birth (QOB), returns to schooling

estimates using, 228–34, 230f, 231t, 232t

RAND Health Insurance Experiment. See
Health Insurance Experiment

random assignment: of control and treat-
ment groups, xiii, 12–16; distinction from
random sampling, 34; selection bias elim-
inated by, 15–16. See also lotteries

randomized trial: advantages of, xiii–xiv, 12,
14–16; analysis of, 12–16; of health insur-
ance effects, 12–13, 16–24, 25–30; history,
30–33; with imperfect compliance 116–22;
police responses to domestic violence,
116–22; samples for, 14–16

random sampling, 14–16, 34–35, 37
Ravallion, Martin, 124n
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RD design. See regression discontinuity
design

Real Bills Doctrine, 181–82
reduced form, instrumental variables, 109,

110, 113, 119–20; in fuzzy regression dis-
continuity design, 171–74; in returns to
schooling example, 222, 225, 226t, 229,
230f, 236–38; in twos-tage least squares,
131, 132–34, 143, 145–46

regression: 55–59, 83–97; anatomy, 89–91;
bivariate, 86–87, 86n, 88–89; coefficients,
57; conditional expectation function and,
82–85, 83f; dependent variable, 56–57;
dummy variables in, 57, 88–89, 90–91;
fitted values, 87–88; Galton’s use of,
80–81; local linear, 167n; with logs,
93–94; long, 69–70, 71, 72–74, 75–77, 79;
and matching, 55–56, 58–59; measure-
ment error in, 240–44; multivariate, 86n,
89–93; omitted variables bias in, 69–78,
76t, 91–93; residuals, 58, 87–88; sensitiv-
ity analysis, 74–78; short, 70, 72–73, 74,
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79; standard errors, 95–97; weighted
201–3. See also control variables

regression differences-in-differences (DD):
bank failures example, 187–89; minimum
legal drinking age example, 192–201;
standard errors for, 205–8

regression discontinuity (RD) design:
150–53; bandwidth, 162, 164; centering
running variable, 155; compared to regres-
sion, 153; fuzzy, 165–74, 235–38; with in-
teraction terms, 155, 156; nonlinearities in,
153–57, 154f; nonparametric, 161–66;
parametric, 160; with quadratic running
variable control, 155–57, 158f; running
variable, 151, 152, 153; sharp, 150–63,
150f, 169; visual, 158

regression to the mean, 80
regression-weighted average, 55, 56, 58–59
Reinhart, Carmen, 180, 180n
reliability, 241
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residuals: definition of, 58; properties of,
87–88; serial correlation of, 205; squared,
58; in two-stage least squares, 144

residual sum of squares (RSS), 86, 202
returns to schooling. See education, returns

to
Richardson, Gary, 182, 182n
Rimer, Sara, 115n
risk set, 106
robust standard error, 97
Rogoff, Kenneth, 180, 180n
Rosenzweig, Mark R., 127, 127n
Rothstein, Richard, 100n
Rouse, Cecilia, 218, 218n, 221
RSS (residual sum of squares), 86, 202
Rubin, Donald B., 113n
running variable, 151, 152, 153

St. Louis Federal Reserve Bank, 181–91
Salter, James, 3
sample average. See sample means
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sample means: difference in, 9–11, 43–45;
estimating population means from, 35;
sampling distribution of, 39–43, 41f, 42f;
sampling variance of, 37–38; standard er-
rors of, 38–39; t-statistics for, 39–43, 41f,
42f; unbiasedness of, 35

sample size: Law of Large Numbers and,
13–16; random assignment and, 13–14;
sampling distributions and, 40–41, 41f,
42f; sampling variance and, 38; standard
error and, 38, 95; unbiased estimators
and, 35

sample standard deviation, 36, 38
sample statistic: definition of, 35; standard

errors of, 38
sample variance, 36, 36n, 44–45
sampling, random, 14–16, 34–35, 37
sampling variance, 21, 37–39, 44–46
sampling variation. See sampling variance
Sandburg, Carl, 141–42
Sanderson, Warren, 123n
SAT scores, 48, 50, 50n, 52, 64, 75–77, 176
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Scherbov, Sergei, 123n
Schlosser, Analia, 127, 127n
schools. See charter schools; education; high

schools
Schwartz, Anna, 180, 180n
scurvy, 31
selection bias: 8–11; in charter school at-

tendance, 105, 108–9; in college choice,
48, 55, 54, 68, 69; definition of, 8; differ-
ences in means and, 10–11; due to bad
control, 215–17, 216t; in Minneapolis Do-
mestic Violence Experiment, 118, 120–21;
in returns to education estimates, 211–13;
in two-stage least squares, 145–46. See
also omitted variables bias

selective exam schools: admissions cutoffs
of, 165–68, 166f, 167f; admissions tests
for, 164–67, 171; differences from nonse-
lective public schools, 173–74; peer quality
in, 165, 168–69, 168f, 170–73, 172f; racial
composition of, 173–74

self-revelation model, 65–66, 66t, 68, 77
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serial correlation, 205–7
sharp regression discontinuity design,

150–63, 150f, 169
sheepskin effects, 235–38, 237f
Sherman, Lawrence W., 116n
siblings, sex composition of, 129–31,

134–38, 135t, 137t. See also twins
significance. See statistical significance
Simpson, Nicole Brown, 115, 122–23
Simpson, O. J., 115, 115n, 122
simultaneous equations models, 139–40
smoking, 32–33
Snow, John, 204–5, 205n, 206f
spousal abuse: Minneapolis Domestic Vi-

olence Experiment, 116–22, 117t; Simpson
case, 115

standard deviation: pooled sample, 45; pop-
ulation, 36; sample, 36, 38

standard error: clustered, 207–8; for com-
parison of means, 21, 44–45; definition of,
38; for differences-in-differences, 205–8;
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estimated, 38–39, 45; instrumental vari-
ables, 144; regression, 62–63, 95–97; ro-
bust, 97; sample size and, 95–96; statistic-
al significance and, 21, 41–43; two-stage
least squares, 144

standardized test score: in charter schools,
103–6, 104t, 108–9, 108f; definition of,
103; on high school exit exams, 236–38,
237f; SAT, 48, 50, 50n, 52, 64, 75–77, 176;
on selective exam school admissions tests,
164–68, 171

standard normal distribution, 39, 40f, 41
Stanley, Julian C., 177, 177n
state effects, 193, 194, 195, 224–27
states: child labor laws in, 224, 225, 226t;

compulsory schooling laws in, 223–27,
228; Medicaid expansion by, 24–30. See
also minimum legal drinking age

state-year panel, 195, 202, 205
statistical independence, 37
statistical inference, 33
statistical significance, 21, 41–43, 44, 46
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Taubman, Sarah, 25n
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Trebbi, Francesco, 140, 140n
Troost, William, 182, 182n
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220t
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142–46; control variables in, 133; family
size example, 132–37, 137t; first stage, 132,
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struments problem in, 145–46; reduced
form, 131, 132–34, 143, 145–46; second
stage, 133, 134–35, 136, 137, 143–44;
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U.S. Supreme Court, 174
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152, 153; treatment, 3, 56, 57, 109, 166–69,
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193. See also control variable; instrument-
al variables; outcome

variance: definition of, 35–36; descriptive,
37; differences in, 44–45, 97; population,
36, 37; residual, 95–97; sample, 36, 36n,
44–45; sampling, 33, 37–39, 44, 46,
95–97. See also covariance

Virtue, G. O., 139n

wages. See earnings; education, returns to
Waiting for Superman, 99
weighted least squares (WLS), 162n, 202–3
Wheeler, Adam, 51n
wholesale firms, 190, 190t
Wilcox, Moses and Aaron, 217
WLS. See weighted least squares
Wolpin, Kenneth I., 127, 127n
women: earnings of, 50; educational attain-

ment of, 125, 129n, 233–34. See also
mothers

working hypothesis, 39
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year effects. See time effects
Yule, George Udny, 80–81, 81n
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