A simple Pigovian pollution tax

$\mathbf{P}(x)$	$Q^{d}(x)$	$Q_{sprivate}(x)$	Qssocial (x)
\$30	0	240	160
\$28	20	220	140
\$26	40	200	120
\$24	60	180	100
\$22	80	160	80
\$20	100	140	60
\$18	120	120	40
\$16	140	100	20
\$14	160	80	0
\$12	180	60	0
\$10	200	40	0
\$8	220	20	0
\$6	240	0	0

This is a modified version of our Danish Dynamite in-class exercise from Session 2.

Problems

Suppose that the external cost of perc pollution caused by Danish Dynamite's dry-cleaning is \$8 per clothing item. Given that,

- 1. Graph the demand curve and both supply curves.
- 2. Indicate the area on the graph that corresponds to the welfare loss associated with the external losses due to perc pollution.
- 3. Suppose the state of Queensland were to impose a **<u>Pigovian pollution tax</u>** of \$8 per clothing item on the dry-cleaning industry. What effect would that have on welfare loss due to perc pollution?